Обсуждение участника:Shovkoplyas Grigory — различия между версиями
Строка 11: | Строка 11: | ||
Чтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность <tex>A_i</tex> на блоки длины <tex>\frac{1}{2}\log_2 N</tex>. Для каждого блока вычислим минимум на нём и определим <tex>B_i</tex> как позицию минимального элемента в <tex>i</tex>-ом блоке. | Чтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность <tex>A_i</tex> на блоки длины <tex>\frac{1}{2}\log_2 N</tex>. Для каждого блока вычислим минимум на нём и определим <tex>B_i</tex> как позицию минимального элемента в <tex>i</tex>-ом блоке. | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
На новой последовательности <tex>B_i</tex> построим [[Решение RMQ с помощью разреженной таблицы|разреженную таблицу]]. Теперь для ответа на запрос <tex>RMQ</tex><tex>[i:j]</tex>, если <tex>i</tex> и <tex>j</tex> находятся в разных блоках, нам необходимо вычислить следующее: | На новой последовательности <tex>B_i</tex> построим [[Решение RMQ с помощью разреженной таблицы|разреженную таблицу]]. Теперь для ответа на запрос <tex>RMQ</tex><tex>[i:j]</tex>, если <tex>i</tex> и <tex>j</tex> находятся в разных блоках, нам необходимо вычислить следующее: | ||
Строка 62: | Строка 41: | ||
+ | === Псевдокод === | ||
+ | <code> | ||
+ | |||
+ | precalc(A : '''int[]''', N : '''int''') | ||
+ | block_size = log(N) / 2 <font color=green> // размеры блоков </font> | ||
+ | K = <tex>\lceil</tex>N / block_size<tex>\rceil</tex> <font color=green> // количество блоков </font> | ||
+ | <font color=green>// предподсчитаем позиции минимумов в каждом блоке</font> | ||
+ | cur_block = 1 | ||
+ | '''for''' i = 1 '''to''' K | ||
+ | B[i] = -1 | ||
+ | '''for''' i = 1 '''to''' N | ||
+ | '''if''' j > block_size | ||
+ | j = 1 | ||
+ | cur++ | ||
+ | '''if''' B[cur] = -1 '''or''' A[B[cur]] > A[i] | ||
+ | B[cur] = i | ||
+ | |||
+ | </code> | ||
=== Результат === | === Результат === |
Версия 15:50, 16 июня 2015
Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера) — применяется для решения за решения задачи .
времени специального случая задачи (поиск минимума на отрезке), в котором соседние элементы входной последовательности различаются на ±1. Может быть использован также для
Задача: |
Дан массив | целых чисел, соседние элементы которой отличаются на . Поступают онлайн запросы вида , для каждого из которых требуется найти минимум среди элементов .
Содержание
Алгоритм
Данный алгоритм основывается на методе решения задачи разреженной таблицы (sparse table, ST) за .
с помощьюЧтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность
на блоки длины . Для каждого блока вычислим минимум на нём и определим как позицию минимального элемента в -ом блоке.
На новой последовательности разреженную таблицу. Теперь для ответа на запрос , если и находятся в разных блоках, нам необходимо вычислить следующее:
построим- минимум на отрезке от до конца блока, содержащего ;
- минимум по всем блокам, находящимся между блоками, содержащими и ;
- минимум от начала блока, содержащего , до .
Ответом на запрос будет позиция меньшего из эти трёх элементов.
Второй элемент мы уже умеем находить за
с помощью и ST. Осталось научиться находить минимум по отрезку, границы которого не совпадают с границами блоков.Минимум внутри блока
Утверждение: |
Если две последовательности и таковы, что все их элементы на соответствующих позициях различаются на одну и ту же константу (т.е. ), то любой запрос даст один и тот же ответ для обеих последовательностей. |
Таким образом, мы можем нормализовать блок, вычтя из всех его элементов первый. Тем самым мы значительно уменьшим число возможных типов блоков.
Утверждение: |
Существует различных типов нормализованных блоков. |
Соседние элементы в блоках отличаются на | . Первый элемент в нормализованном блоке всегда равен нулю. Таким образом, каждый нормализованный блок может быть представлен -вектором длины . Таких векторов .
Осталось создать
таблиц — по одной для каждого типа блока. В такую таблицу необходимо занести предподсчитанные ответы на все возможные запросы минимума внутри блока соответствующего типа, которых . Для каждого блока в необходимо заранее вычислить его тип. Таким образом мы получили возможность отвечать на запрос минимума по любой части блока за , затратив на предподсчёт времени.
Псевдокод
precalc(A : int[], N : int) block_size = log(N) / 2 // размеры блоков K =N / block_size // количество блоков // предподсчитаем позиции минимумов в каждом блоке cur_block = 1 for i = 1 to K B[i] = -1 for i = 1 to N if j > block_size j = 1 cur++ if B[cur] = -1 or A[B[cur]] > A[i] B[cur] = i
Результат
Итого, на предподсчёт требуется
времени и памяти, а ответ на запрос вычисляется за .См. также
- Решение RMQ с помощью разреженной таблицы
- Сведение задачи RMQ к задаче LCA
- Сведение задачи LCA к задаче RMQ
Источники информации
- Bender, M.A., Farach-Colton, M. — The LCA Problem Revisited. LATIN (2000), с. 88-94