Введение в комплексный анализ — различия между версиями
Строка 16: | Строка 16: | ||
Для выделения вещественной и комплексной частей будем пользоваться записями <tex> Re(z) = a </tex> и <tex> Im(z) = b </tex>. | Для выделения вещественной и комплексной частей будем пользоваться записями <tex> Re(z) = a </tex> и <tex> Im(z) = b </tex>. | ||
− | Комплексное число можно представить на плоскости, если отталкиваться от вещественной и мнимой частей, как от координат абсциссы и ординаты. А значит длина полученного вектора на плоскости <tex> |z| = r = sqrt(a^2 + b^2) </tex>. Если задавать вектор не в | + | Комплексное число можно представить на плоскости, если отталкиваться от вещественной и мнимой частей, как от координат абсциссы и ординаты. А значит длина полученного вектора на плоскости <tex> |z| = r = sqrt(a^2 + b^2) </tex>. Если задавать вектор не в Декартовой системе координат, а в полярной, то приходится работать с <tex> \Phi = \phi + 2 \pi k - art(z)</tex>, где <tex> k </tex> целое число. |
=Ссылки= | =Ссылки= |
Версия 10:37, 3 сентября 2015
Эта статья находится в разработке!
На главную <<
Комплексный анализ отличается от математического анализа тем, что мы работаем теперь не только с вещественными числами, но и с комплексными.
Определение: |
Комплексное число это пара 1) 2) ; . | заданных на множестве, где определены операторы сложения и умножения:
Соответственно пара это некий абстрактный объект.
Именно из этого определения и получается, что комплексное число
можно представить в виде , где .Для выделения вещественной и комплексной частей будем пользоваться записями
и .Комплексное число можно представить на плоскости, если отталкиваться от вещественной и мнимой частей, как от координат абсциссы и ординаты. А значит длина полученного вектора на плоскости
. Если задавать вектор не в Декартовой системе координат, а в полярной, то приходится работать с , где целое число.