Решение RMQ с помощью разреженной таблицы — различия между версиями
Smolcoder (обсуждение | вклад) (→Разреженная таблица) |
м (rollbackEdits.php mass rollback) |
||
| (не показано 36 промежуточных версий 11 участников) | |||
| Строка 1: | Строка 1: | ||
| − | '''Разреженная таблица''' (англ. ''sparse table'') позволяет решать задачу online static RMQ за <tex>O(1)</tex> на запрос, с предподсчётом за <tex>O(N \log N)</tex> и использованием <tex>O(N \log N)</tex> памяти. | + | '''Разреженная таблица''' (англ. ''sparse table'') позволяет решать задачу online static RMQ (получение минимума или максимума на отрезке, когда элементы массива не могут изменяться, а запросы поступают последовательно) за <tex>O(1)</tex> на запрос, с предподсчётом за <tex>O(N \log N)</tex> и использованием <tex>O(N \log N)</tex> памяти. |
| − | = | + | |
| − | Дан массив <tex>A[1 | + | {{Задача |
| + | |definition = Дан массив <tex>A[1 \ldots N]</tex> целых чисел. Поступают запросы вида <tex>(l, r)</tex>, для каждого из которых требуется найти минимум среди элементов <tex>A[l], A[l + 1], \ldots, A[r] </tex>. | ||
| + | }} | ||
| + | |||
== Разреженная таблица == | == Разреженная таблица == | ||
| − | Разреженная таблица — двумерная структура данных <tex>ST[i | + | Разреженная таблица — двумерная структура данных <tex>ST[i][j]</tex>, для которой выполнено следующее: |
| − | Простой метод построения таблицы заключён в следующем | + | <tex>ST[i][j]=\min\left(A[i], A[i+1], \ldots, A[i+2^{j}-1]\right),\quad j \in [0 \ldots \log N]</tex>. |
| + | |||
| + | Иначе говоря, в этой таблице хранятся минимумы на всех отрезках, длины которых равны степеням двойки. Объём памяти, занимаемый таблицей, равен <tex>O(N \log N)</tex>, и заполненными являются только те элементы, для которых <tex>i+2^j \leqslant N </tex>. | ||
| + | |||
| + | Простой метод построения таблицы заключён в следующем рекуррентном соотношении: | ||
| + | $$ | ||
| + | ST[i][j]= | ||
| + | \begin{cases} | ||
| + | \min\left(ST[i][j-1], ST[i+2^{j-1}][j-1]\right),&\text{если $j > 0$;}\\ | ||
| + | A[i], &\text{если $j = 0$;} | ||
| + | \end{cases} | ||
| + | $$ | ||
| + | |||
| + | == Идемпотентность == | ||
| + | Такая простота достигается за счет идемпотентности операции минимум: <tex>\min(a, a)=a</tex>. Это один из ключевых моментов этого метода, так как она позволяет нам корректно считать минимум в области пересечения отрезков. | ||
| + | |||
| + | Пусть $\circ$ — произвольная бинарная операция, которая удовлетворяет свойствам: | ||
| + | * ассоциативности: $a \circ (b \circ c) = (a \circ b) \circ c $, | ||
| + | * коммутативности: $a \circ b = b \circ a$, | ||
| + | * идемпотентности: $a \circ a = a $. | ||
| + | |||
| + | |||
| + | {{Утверждение | ||
| + | |statement= | ||
| + | $a_l \circ a_{l+1} \circ \ldots \circ a_r = (a_l \circ a_{l+1} \circ \ldots \circ a_{l + k}) \circ (a_{r - k} \circ a_{r - k + 1} \circ \ldots \circ a_r)$, где $\frac{r - l}{2} \leqslant k \leqslant r - l$. | ||
| + | |proof= | ||
| + | Отрезок $(a_{r-k}, a_{l + k})$ содержится в обоих операндах правой части. Значит, каждый элемент из него входит два раза. По коммутативности мы можем располагать элементы в любом порядке, по ассоциативности мы можем выполнять операции в произвольном порядке, поэтому повторяющие в правой части элементы мы можем расположить рядом друг с другом и затем по идемпотентности один из них убрать. Переставляя оставшиеся элементы в правой затем легко получаем выражение в левой части. | ||
| + | }} | ||
== Применение к задаче RMQ == | == Применение к задаче RMQ == | ||
| + | |||
| + | <div> Предпосчитаем для длины отрезка <tex>l</tex> величину <tex>\lfloor \log_2l \rfloor</tex>. Для этого введем функцию <tex>fl</tex> (от ''floor'', т.к. логарифм округляется вниз): | ||
| + | |||
| + | '''int''' '''fl'''('''int''' len): | ||
| + | '''if''' len <tex>=</tex> 1 | ||
| + | '''return''' 0 | ||
| + | '''else''' | ||
| + | '''return''' fl(<tex>\lfloor \cfrac{len}{2}\rfloor</tex>) + 1 | ||
| + | |||
| + | Вычисление <tex>fl[l]</tex> происходит за <tex>O(\log (l))</tex>. А так как длина может принимать <tex>N</tex> различных значений, то суммарное время предпосчета составляет <tex>O(N\log N)</tex>. | ||
| + | |||
| + | Пусть теперь дан запрос <tex>(l, r)</tex>. Заметим, что <tex>\min(A[l], A[l+1], \ldots, A[r]) = \min\left(ST[l][j], ST[r-2^j+1][j]\right)</tex>, где <tex>j = \max \{k \mid 2^k \leqslant r - l + 1\}</tex>, то есть логарифм длины запрашиваемого отрезка, округленный вниз. Но эту величину мы уже предпосчитали, поэтому запрос выполняется за <tex>O (1)</tex>. | ||
| + | |||
[[Файл:SparseTableRMQ.png|right|Решение задачи RMQ на разреженной таблице]] | [[Файл:SparseTableRMQ.png|right|Решение задачи RMQ на разреженной таблице]] | ||
| − | + | ||
| − | + | Из выше доказанной теоремы следует, что этот метод работает не только с операцией минимум, но и с любой идемпотентной, ассоциативной и коммутативной операцией. Таким образом мы получаем целый класс задач, решаемых разреженной таблицей. | |
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
| − | == Источники == | + | |
| + | == См. также == | ||
| + | * [[Сведение задачи LCA к задаче RMQ | Сведение задачи LCA к задаче RMQ]] | ||
| + | * [[Алгоритм Фарака-Колтона и Бендера | Алгоритм Фарака-Колтона и Бендера]] | ||
| + | * [[Сведение задачи RMQ к задаче LCA | Сведение задачи RMQ к задаче LCA]] | ||
| + | * [[ Heavy-light декомпозиция | Heavy-light декомпозиция]] | ||
| + | |||
| + | == Источники информации== | ||
* ''Bender, M.A., Farach-Colton, M. et al.'' — '''Lowest common ancestors in trees and directed acyclic graphs'''. — J. Algorithms 57(2) (2005) — с. 75–94. | * ''Bender, M.A., Farach-Colton, M. et al.'' — '''Lowest common ancestors in trees and directed acyclic graphs'''. — J. Algorithms 57(2) (2005) — с. 75–94. | ||
| − | |||
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Задача о наименьшем общем предке]] | [[Категория: Задача о наименьшем общем предке]] | ||
Текущая версия на 19:28, 4 сентября 2022
Разреженная таблица (англ. sparse table) позволяет решать задачу online static RMQ (получение минимума или максимума на отрезке, когда элементы массива не могут изменяться, а запросы поступают последовательно) за на запрос, с предподсчётом за и использованием памяти.
| Задача: |
| Дан массив целых чисел. Поступают запросы вида , для каждого из которых требуется найти минимум среди элементов . |
Разреженная таблица
Разреженная таблица — двумерная структура данных , для которой выполнено следующее:
.
Иначе говоря, в этой таблице хранятся минимумы на всех отрезках, длины которых равны степеням двойки. Объём памяти, занимаемый таблицей, равен , и заполненными являются только те элементы, для которых .
Простой метод построения таблицы заключён в следующем рекуррентном соотношении: $$ ST[i][j]= \begin{cases} \min\left(ST[i][j-1], ST[i+2^{j-1}][j-1]\right),&\text{если $j > 0$;}\\ A[i], &\text{если $j = 0$;} \end{cases} $$
Идемпотентность
Такая простота достигается за счет идемпотентности операции минимум: . Это один из ключевых моментов этого метода, так как она позволяет нам корректно считать минимум в области пересечения отрезков.
Пусть $\circ$ — произвольная бинарная операция, которая удовлетворяет свойствам:
- ассоциативности: $a \circ (b \circ c) = (a \circ b) \circ c $,
- коммутативности: $a \circ b = b \circ a$,
- идемпотентности: $a \circ a = a $.
| Утверждение: |
$a_l \circ a_{l+1} \circ \ldots \circ a_r = (a_l \circ a_{l+1} \circ \ldots \circ a_{l + k}) \circ (a_{r - k} \circ a_{r - k + 1} \circ \ldots \circ a_r)$, где $\frac{r - l}{2} \leqslant k \leqslant r - l$. |
| Отрезок $(a_{r-k}, a_{l + k})$ содержится в обоих операндах правой части. Значит, каждый элемент из него входит два раза. По коммутативности мы можем располагать элементы в любом порядке, по ассоциативности мы можем выполнять операции в произвольном порядке, поэтому повторяющие в правой части элементы мы можем расположить рядом друг с другом и затем по идемпотентности один из них убрать. Переставляя оставшиеся элементы в правой затем легко получаем выражение в левой части. |
Применение к задаче RMQ
int fl(int len):
if len 1
return 0
else
return fl() + 1
Вычисление происходит за . А так как длина может принимать различных значений, то суммарное время предпосчета составляет .
Пусть теперь дан запрос . Заметим, что , где , то есть логарифм длины запрашиваемого отрезка, округленный вниз. Но эту величину мы уже предпосчитали, поэтому запрос выполняется за .
Из выше доказанной теоремы следует, что этот метод работает не только с операцией минимум, но и с любой идемпотентной, ассоциативной и коммутативной операцией. Таким образом мы получаем целый класс задач, решаемых разреженной таблицей.
См. также
- Сведение задачи LCA к задаче RMQ
- Алгоритм Фарака-Колтона и Бендера
- Сведение задачи RMQ к задаче LCA
- Heavy-light декомпозиция
Источники информации
- Bender, M.A., Farach-Colton, M. et al. — Lowest common ancestors in trees and directed acyclic graphs. — J. Algorithms 57(2) (2005) — с. 75–94.
