Straight skeleton — различия между версиями
Shersh (обсуждение | вклад) (→Свойства Straight skeleton) |
Shersh (обсуждение | вклад) |
||
| Строка 1: | Строка 1: | ||
| − | Существует целый класс структур типа <tex>\mathrm{skeleton}</tex>, которые описывают базовые топологические свойства объектов. Структура <tex>\mathrm{straight}\ \mathrm{skeleton}</tex> была придумала Oswin Aichholzer. Она используются в различных практических задачах (проектирование крыш для зданий) | + | Существует целый класс структур типа <tex>\mathrm{skeleton}</tex>, которые описывают базовые топологические свойства объектов. Структура <tex>\mathrm{straight}\ \mathrm{skeleton}</tex> была придумала Oswin Aichholzer. Она используются в различных практических задачах (проектирование крыш для зданий), для доказательства некоторых теорем<ref>[http://en.wikipedia.org/wiki/Fold-and-cut_theorem Wikipedia {{---}} Fold-and-cut theorem]</ref>, но самое главное {{---}} можно оффсетить полигоны и упрощать их. |
== Топологические свойства == | == Топологические свойства == | ||
| − | {{ | + | Далее будет дано процедурное определение <tex>\mathrm{straight}\ \mathrm{skeleton}</tex>. То есть эта структура данных получается в результате следующей процедуры. |
| − | |||
| − | |||
| − | |||
| − | + | Можно представить, будто все стороны многоугольника параллельно двигаются внутрь с одинаковой постоянной скоростью, то есть многоугольник как бы сжимается внутрь. Тогда {{Acronym | вершины будут двигаться вдоль биссектрис | Очевидный факт}}, а точки пересечения биссектрис будут являться точками, в которых рёбра полностью сократились (выродились в точку). В каждый момент времени от начала движения рёбер получается слоистая структура (рис 1.). На рис. 2 синим цветом выделен <tex> \mathrm{straight}\ \mathrm{skeleton} </tex> {{---}} множество отрезков, образованных точками пересечения при движении сторон полигона. Чем-то структура похожа на строение крыши в домах (рис. 3). И для решения этой задачи как раз <tex> \mathrm{straight}\ \mathrm{skeleton} </tex> и может применяться: по стенам здания необходимо спроектировать его крышу. | |
{| cellpadding="3" style="margin-left: auto; margin-right: auto;" | {| cellpadding="3" style="margin-left: auto; margin-right: auto;" | ||
| Строка 16: | Строка 13: | ||
[[Файл:Straight_roof.png|500px|center|thumb|Проектирование крыши здания по готовым стенам]] | [[Файл:Straight_roof.png|500px|center|thumb|Проектирование крыши здания по готовым стенам]] | ||
| − | Процесса стягивания многоугольника продолжается до тех пор, пока происходят его топологические изменения, то есть меняется число вершин в стянутом многоугольнике, и таким образом появляются новые вершины | + | Процесса стягивания многоугольника продолжается до тех пор, пока происходят его топологические изменения, то есть меняется число вершин в стянутом многоугольнике, и таким образом появляются новые вершины <tex> \mathrm{straight}\ \mathrm{skeleton} </tex>. Существуют два типа изменений, в ходе которых они образуются: |
* <tex> Edge\ event </tex> {{---}} данное изменение происходит, когда сторона многоугольника полностью стягивается, делая соседние стороны инцидентными. | * <tex> Edge\ event </tex> {{---}} данное изменение происходит, когда сторона многоугольника полностью стягивается, делая соседние стороны инцидентными. | ||
* <tex> Split\ event </tex> {{---}} происходит, когда ребро разбивается на два новых ребра, исходящих из точки преломления старого. Такое событие происходит на биссектрисе вогнутой вершины многоугольника. И тогда стягиваемая многоугольником область может разбивться на две непересекающиеся многоугольные области. | * <tex> Split\ event </tex> {{---}} происходит, когда ребро разбивается на два новых ребра, исходящих из точки преломления старого. Такое событие происходит на биссектрисе вогнутой вершины многоугольника. И тогда стягиваемая многоугольником область может разбивться на две непересекающиеся многоугольные области. | ||
| Строка 30: | Строка 27: | ||
[[Файл:Event_example.png]] | [[Файл:Event_example.png]] | ||
| − | Задача построения такого <tex> \mathrm{straight}\ \mathrm{skeleton} </tex> является частным случаем задачи построения <tex> \mathrm{weighted}\ \mathrm{straight}\ \mathrm{skeleton} </tex>, где каждому ребру можно задавать ''вес'', то есть скорость движения ребра. И эта скорость может быть даже отрицательной. | + | Задача построения такого <tex> \mathrm{straight}\ \mathrm{skeleton} </tex> является частным случаем задачи построения <tex> \mathrm{weighted}\ \mathrm{straight}\ \mathrm{skeleton} </tex>, где каждому ребру можно задавать ''вес'', то есть скорость движения ребра. И эта скорость может быть даже отрицательной. Но задача построения <tex>\mathrm{WSS}</tex> является в общем случае неопределённой. В процессе её решения возникают неоднозначности<ref>[http://twak.blogspot.ru/2009/05/ambiguous-weighted-skeleton.html Ambiguous weighted skeleton]</ref>. Задача <tex> \mathrm{weighted}\ \mathrm{straight}\ \mathrm{skeleton} </tex> является более сложной, и здесь рассматриваться не будет. |
| + | |||
| + | Алгоритм построения <tex> \mathrm{straight}\ \mathrm{skeleton} </tex> можно модифицировать, чтобы ''волновой фронт'' шёл от полигона. То есть сначала можно построить <tex> \mathrm{straight}\ \mathrm{skeleton} </tex>, тем самым упростив структуру полигона и сделав его более "гладким", а затем распространить волну в обратную сторону. | ||
== Свойства Straight skeleton == | == Свойства Straight skeleton == | ||
Версия 01:11, 5 декабря 2014
Существует целый класс структур типа , которые описывают базовые топологические свойства объектов. Структура была придумала Oswin Aichholzer. Она используются в различных практических задачах (проектирование крыш для зданий), для доказательства некоторых теорем[1], но самое главное — можно оффсетить полигоны и упрощать их.
Содержание
- 1 Топологические свойства
- 2 Свойства Straight skeleton
- 3 Алгоритм с изпользованием SLAV
- 3.1 Выпуклый полигон
- 3.2 Невыпуклый полигон
- 4 Алгоритм построения с помощью Motorcycle graph
- 5 Другие алгоритмы
- 6 См. также
- 7 Примечания
- 8 Источники информации
Топологические свойства
Далее будет дано процедурное определение . То есть эта структура данных получается в результате следующей процедуры.
Можно представить, будто все стороны многоугольника параллельно двигаются внутрь с одинаковой постоянной скоростью, то есть многоугольник как бы сжимается внутрь. Тогда вершины будут двигаться вдоль биссектрис , а точки пересечения биссектрис будут являться точками, в которых рёбра полностью сократились (выродились в точку). В каждый момент времени от начала движения рёбер получается слоистая структура (рис 1.). На рис. 2 синим цветом выделен — множество отрезков, образованных точками пересечения при движении сторон полигона. Чем-то структура похожа на строение крыши в домах (рис. 3). И для решения этой задачи как раз и может применяться: по стенам здания необходимо спроектировать его крышу.
Процесса стягивания многоугольника продолжается до тех пор, пока происходят его топологические изменения, то есть меняется число вершин в стянутом многоугольнике, и таким образом появляются новые вершины . Существуют два типа изменений, в ходе которых они образуются:
- — данное изменение происходит, когда сторона многоугольника полностью стягивается, делая соседние стороны инцидентными.
- — происходит, когда ребро разбивается на два новых ребра, исходящих из точки преломления старого. Такое событие происходит на биссектрисе вогнутой вершины многоугольника. И тогда стягиваемая многоугольником область может разбивться на две непересекающиеся многоугольные области.
На рисунке ы изображены зелёным кругом, а ы — красным прямоугольником.
Таким образом, ы соответствуют внутренним вершинам , гранями являются области многоугольника, заметаемые сторонами многоугольника в процессе стягивания, дуги соединяют либо две внутренние вершины либо внутреннюю вершину с листом — вершиной многоугольника.
Стоит также отметить, что в общем случае ы могут быть нетривиальными. На рисунке ниже в случае в вершине совпали из вершины и ребра и ребра , а в случае совпали два а вершин и . Случаи и — простые и ы.
Задача построения такого является частным случаем задачи построения , где каждому ребру можно задавать вес, то есть скорость движения ребра. И эта скорость может быть даже отрицательной. Но задача построения является в общем случае неопределённой. В процессе её решения возникают неоднозначности[2]. Задача является более сложной, и здесь рассматриваться не будет.
Алгоритм построения можно модифицировать, чтобы волновой фронт шёл от полигона. То есть сначала можно построить , тем самым упростив структуру полигона и сделав его более "гладким", а затем распространить волну в обратную сторону.
Свойства Straight skeleton
Из процесса построения следует, что он является планарным графом. Ранее уже упоминалось, что он также является деревом. Будем обозначать простого полигона без самопересечений , в котором вершин, как . Тогда справедливы следующие леммы:
| Лемма (1): |
является деревом, содержит граней, не более внутренние вершины и не более рёбер. |
| Доказательство: |
|
Каждая грань начинает образовываться во время стягивания ребра , и даже если на ребре произошёл , сама грань не могла разделиться. Построение грани завершается, когда ребро полностью стягивается. И это ребро дальше не может появиться снова, поэтому граней в столько, сколько сторон в многоугольнике, то есть ровно . То, что является деревом, легко доказывается по индукции числа вершин в многоугольнике. База: многоугольник является треугольником, в его будет одна внутренняя вершина — точка пересечения биссектрис, — листьями будут вершины треугольника. Такой граф очевидным образом будет деревом. Переход: пусть для всех многоугольников с количеством вершин меньше будет деревом. Рассмотрим самый первый в многоугольнике из вершин.
|
Ещё один пример:
Алгоритм с изпользованием SLAV
Далее будет описан алгоритм, придуманный Petr Felkel, который строит за время , или просто , где — общее число вершин в полигоне, — число вогнутых вершин в полигоне. Немного модифицированный этот алгоритм используется в открытой библиотеке вычислительной геометрии CGAL[3]. Однако этот алгоритм всё равно ещё достаточно медленный. В реальной жизни используют его модификации или более сложные алгоритмы.
Сначала алгоритм будет рассмотрен на простом случае — выпуклом многоугольнике, — а потом на невыпуклом многоугольнике.
Выпуклый полигон
В случае выпуклого многоугольника возникают только ы по определению. Поэтому просто алгоритм можно описать следующим образом: найдём точки пересечения биссектрис многоугольника для каждой вершины со всеми соседними вершинами, возьмём такую точку, в которой произойдёт самый первый , добавим полученную вершину в , соеденим её с вершинами ребра, которое исчезло в процессе текущего а, а потом перестроим полигон, создав новую вершину и подвинув все остальные вдоль биссектрис на одинаковое расстояние. Будем продолжать этот процесс до тех пор, пока многоугольник не превратится в треугольник.
Теперь реализуем этот алгоритм более эффективно. Для этого мы будем использовать специальную структуру данных — (set of circular lists of active vertices). Эта структура хранит цикл всех вершин для внешней грани, а так же цикл для каждой дыры многоугольника и для всех многоугольников, возникающих в процессе построения . В данном случае у нас будет просто — циклический список всех вершин многоугольника.
В таком списке частично найденного вершины имеют указатели на следующую и предыдущую вершину в порядке обхода контура, а так же указатели на инцидентные рёбра. Если представить процесс стягивания многоугольника, как будто у нас уже построена для него крыша, а мы двигаем вверх некоторую заметающую плоскость, где пересечение крыши и плоскости будет обозначать текущий слой, то можно заметить, что область полигона разбивается на несколько частей. Каждой части будет соответствовать свой , отсюда нам и нужен .
Алгоритм для выпуклых полигонов
Далее считаем, что полигон представлен рёбрами вдоль движения по контуру полигона против часовой стрелки.
Шаг 1. Инициализация:
- Поместим все вершины многоугольника в двусвязный циклический список в порядке обхода вдоль контура. Все вершины в считаются активными сейчас.
- Для каждой вершины в добавим указатели на инцидентные рёбра и , а также найдём луч биссектрисы .
- Для каждой вершины найдём ближайшее пересечение биссектрисы с лучами и . Если это пересечение существует, то положим его в приоритетную очередь согласно — расстоянию от точки пересечения до одного из рёбер, инцидентных вершине . Для каждой точки пересечения будем так же хранить два указателя на вершины и — начала лучей биссектрис, которые пересекаются в точке . Эти указатели понадобятся в будущем, когда нужно будет определять соответствующие вершинам рёбра (см. рисунок ниже).
Шаг 2. Следующие действия выполняются в цикле, пока приоритетная очередь не пустая:
- Извлечём точку пересечения из приоритетной очереди.
- Если вершины и , соответствующие данной точке пересечения помечены как обработанные, то переходим к следующей итерации цикла шага 2. Это означает, что ребро между данными вершинами полностью стянулось (обработанные вершины и стянутые рёбра помечены крестом на рисунке ниже).
- Если осталось всего три вершины , то добавим в рёбра . В случае выпуклого многоугольника в этом месте можно завершить алгоритм. Но в общем случае нужно будет перейти к началу цикла снова.
- Добавим в рёбра .
- Теперь необходимо модифицировать (детали на рисунке ниже):
- пометим вершины и как обработанные (напомню, что они обозначаются крестом на рисунке к данному алгоритму),
- создадим новую вершину в точке пересечения (отмечена квадратиком на рисунке),
- добавим вершину в , то есть между предыдущем к и следующим к узлами,
- добавим вершине указатели на соответствующие рёбра и .
- Посчитаем дополнительные величины для вершины :
- луч биссектрисы между рёбрами и ,
- точки пересечения луча b с соседями в , как в шаге
- сохраним ближайшие точки пересечения в приоритетной очереди.
Заметим, что нам не нужно пересчитывать все расстояния в очереди приоритетов. Если мы стянем полигон до первого события исчезания ребра, то относительный порядок остальных событий не изменится. Нам необходимо только вставить новые точки пересечения в правильные места. Это можно эффективно сделать, если использовать структуру данных типа skip list.
В этом случае асимптотика алгоритма составляет , так как на каждой итерации цикла нам нужно положить константное число элементов в очередь, а итераций цикла не больше .
Частные случаи
Частным случаем в алгоритме может быть совпадение нескольких ов в одной точке. Эти совпадения добавляются в шагах и , но могут быть относительно легко обработаны в шаге .
Также может случиться, что какие-то рёбра не стянулись в итоге в одну вершину, а слились. Такое возможно, если какие-то стороны полигона были изначально параллельны (этот случай легко увидеть на прямоугольнике, не являющемся квадратом). С этим частным случаем можно разобраться в шаге , проверив, не совпала ли одна из трёх вершин с другой. В выпуклом многоугольнике слияние двух рёбер может произойти только один раз (что неправда для невыпуклого многоугольника), поэтому здесь несложно разобраться с таким случаем.
Невыпуклый полигон
Основной принцип для невыпуклых полигонов такой же. Только с вершиной ещё хранится дополнительный атрибут, обозначающий событие, которое в ней произошло: или .
Наличие невыпуклой вершины может привести (а может и не привести) к разделению внутренней области. Невыпуклая вершина может так же участвовать в обычном е (точка на рисунке выше). В таком случае ы обрабатываются так же, как и в алгоритме с выпуклым многоугольником.
Посмотрим теперь, что делать с точкой , в которой возникает .
Нахождение координат точки B
В простейшем случае точка появляется, когда "волновой фронт" распространения движения рёбер от невыпуклой вершины натыкается на встречный фронт противолежащего ребра. В такой момент возникает . Поэтому точка может быть изначально охарактеризована, как точка, находящаяся на одном расстоянии от противолежащего угла и прямых, содержащих рёбра невыпуклой вершины. Задача состоит в том, чтобы найти это самое противолежащее ребро (случай на рисунке выше). Но как показывает случай , простой тест на пересечение ребра и биссектрисы невыпуклой вершины не может быть использован (в этом случае луч биссектрисы пересекает сразу два ребра, непонятно, с каким из них произойдёт ). Поэтому необходимо ещё проверять, что точка лежит между лучами и , идущих из вершин, инцидентных противолежащему ребру .
Замечание: простой тест на пересечение биссектрисы вершины и целой линии, содержащей ребро, отсекает случаи тех рёбер, которые лежат позади вершины .
Координаты возможной точки кандидата вычисляются следующим образом: это точка пересечения биссектрисы вершины и биссектрисы угла, который образуется в точке пересечения прямой, содержащей одно из рёбер, инцидентных , и прямой, содержащей противолежащее ребро . Итоговая точка пересечения выбирается как ближайшая среди всех найденных точек .
Работа с LAV в момент возникновения split event'a
Когда происходит работа с точкой а, то необходимо разбить соответствующий полигон на две части, что соответствует разделению данного полигона на два списка. И в каждый новый список нужно вставить новую вершину , образующуюся в точке пересечения . Обе вершины указывают на разделяющее ребро (см. рисунок выше).
Частный случай множественных split event'ов на одном ребре
Уже должно было стать понятно, что алгоритм не строит промежуточного представления , а работает исключительно с рёбрами исходного полигона. Это приводит к ситуации (см. рисунок выше), когда одно ребро является общим для нескольких новых полигонов в промежуточном представлении (то есть одно ребро меняет свою топологию несколько раз), образовавшихся после разделения старого полигона. В случае, когда ребро уже разбито, и происходит следующий за ним , необходимо правильно определить концы противолежащего ребра (то есть вершины/узлы, которые активный в текущем уровне конструирования крыши, как например вершины и на рисунке ниже).
Например, в данном случае ребро является частью ребра , которое стягивается и должно теперь указывать на вершину . Когда произойдёт следующее событые в точке пересечения , то нам необходимо правильно указать ребро новой вершине в этой точке в . Реальный конец ребра — точка , но мы хотим указать на ребро . Это необходимо для поддержания корректности структуры . Ниже будет представлено два способа решения этой проблемы.
Первый способ
Можно физически разделить исходное ребро на два, вставив новую точку . Это решает проблему, так как никакое ребро не будет разделено дважды, а определение концов разделяемого ребра выполняется просто. Вставка вершины для точки в тоже происходит относительно просто, потому что мы знаем точно, с каким ребром эта вершина связана. Но такой подход требует отдельно рассматривать вершины типа , чтобы не добавить их случайно в .
Второй способ (используемый в авторском решении)
Идея заключается в том, чтобы хранить только вершины, которые реально будут в , а указатели на разделямое ребро хранятся во всех подполигонах, для которых это ребро является общим. Это приводит к множественным попаданиям ов на одно ребро.
Для примера, два полигона на рисунке выше разделяют общую ссылку на ребро . Во время процесса обработки вершины многоугольник разбивается на две части и , а вершина помечается как обработанная.
Всё это нужно для того, чтобы правильно связать с вершинами и , а не с и . Во время обхода выбирается правильная часть ребра (в данном случае она определяется вершинами и ). Определяется следующим образом: вершина лежит справа от биссектрисы посещённой вершины и слева от биссектрисы предка посещённой вершины .
Алгоритм для невыпуклых полигонов
Шаг 1. Инициализация:
- Положим все вершины в , как это делается в алгоритме для выпуклых многоугольников, а потом поместим в .
- Найдём биссектрисы как в случае с выпуклым многоугольником.
- Для каждой биссектрисы выпуклой вершины найдём ближайшую точку пересечения с биссектрисой соседней вершины, а для невыпуклых вершин найдём также точки пересечения с противолежащими рёбрами (как это описывалось раньше), и положим в приоритетную очередь ближайшую точку пересечения . Будем также с этой точкой хранить её тип — или .
Шаг 2. Пока очередь не пуста:
- Извлечём точку пересечения из приоритетной очереди. Если она имеет тип , то её надо обработать так же, как в шагах алгоритма для невыпуклых полигонов. Иначе выполнять шаги ниже.
- Если точка пересечения указывает на уже обработанные вершины, то продолжить со следующей итерации цикла шага 2, как в случае с выпуклым полигоном.
- Нужно сделать примерно то же самое, что и шаге алгоритма для выпуклых многоугольников. Только на этом цикл не завершается, а продолжается с новой итерации, так как многоугольник мог разделиться на несколько частей, и, возможно, мы обработали лишь один подпалигон и не последний.
- Добавим в ребро , где точка указывает на вершину . Для ов точки пересечения указывают ровно на одну вершину в .
- Модифицируем теперь :
- пометим вершину как обработанную,
- создадим две новые вершины и с одинаковыми координатами точки пересечения ,
- найдём для каждой вершины и противолежащее ребро в своём подпалигоне,
- разделим с вершиной на две части (как показано на рисунке выше), вставим в части вершины и , а затем обе части добавим в . Вершина будет следующей для предыдующего к узлу в и предыдущей для конца противолежащего ребра. Аналогично для вершины . Этот шаг в действительно разбивает полигон на две части,
- Добавим указатели вершинам и на соответствующие рёбра.
- Для обеих вершин и :
- найдём биссектрисы между рёбрами, на которые эти вершины слинковались в шаге ,
- найдём точки пересечения лучей с биссектрисами соседних вершин как в шаге (тут могут получиться точки пересечения обоих типов),
- сохраним ближайшие точки пересечения в приоритетной очереди.
Обработка событий обоих типов выполняется с такой же асимптотикой, что и в алгоритме для выпуклых полигонов. Основной вклад в асимптотику вносит вычисление ов, когда нам нужно пробежаться по всем рёбрам и найти противолежащее. Отсюда и получается итоговая асимптотика .
Случай полигонов с дырами
Данный алгоритм может работать и с многоугольниками, содержащими дыры, если они ориентированы по часовой стрелке, чтобы внутренняя область многоугольника лежала слева от рёбер. И в самом начале алгоритма каждый замкнутый контур помещается в свой в множестве .
Пример не для слабонервных
Особенности реализации и другие частные случаи
Приведённый здесь алгоритм плох тем (кроме того, что медленно работает), что является довольно общим и не рассматривает возникающие на практике сложные частные случаи. Он будет работать на произвольных случайных полигонах, в которых возникают только простые события (картинка ниже) — в точке произошёл , в точке — , а точки и уже внутри треугольников, и с ними разобраться просто.
Но на практике может возникнуть что-то менее тривиальное (картинка ниже): совпадение многих ов в одной точке, многих ов, или даже в одной точке могут одновременно быть события двух типов, а также многократное наложение параллельных рёбер друг на друга.
Параллельные противоположные рёбра
С точками и разбираться необходимо следующим образом: как только параллельные рёбра становятся соседними перед событием, нужно проверить, что они соединятся потом в одно ребро после произошедшего события. Если в осталось только два параллельных ребра, то мы удаляем их из .
Ещё примеры не для слабонервных.
Параллельные "соседние" рёбра
Другой интересный случай возникает, когда несоседние параллельные рёбра становятся соседними после исчезания рёбер между ними. Такая проблема называется (parallel consecutive edge problem). В таком случае можно поступать по-разному.
- На левом рисунке используется — правило, когда два ребра рассматриваются отдельно. Тогда верно утверждение, что каждому ребру соответствует ровно одна грань. И в этом случае можно считать, что новая вершина на стыке двух рёбер движется перпендикулярно рёбрам.
- На среднем рисунке используется — рёбра в таком случае объединяются в одно новое ребро.
Отличать этот случай от предыдущего можно, посмотрев на ориентацию двух рёбер. Если они направлены в одну сторону, то это , если в противоположную, то разбираемся как в предыдущем случае.
Множественные события в одной точке
Первая проблема, возникающая в этом случае — точное определение того, что несколько событий произошли в одной точке. Для определения совпадения нескольких событий в одной точке можно поступать приближённо — вводить с каждой точкой -окрестность и смотреть, не попали ли другие точки в эту окрестноить, — или использовать более точную арифметику.
Чтобы научиться разбираться с такими случаями в алгоритме, когда мы уже поняли, что в одной точке будет несколько событий, введём понятие обобщённого события пересечения (англ. GIE, generalized intersection event).
Для начала введём понятие цепочек рёбер, которые вовлечены в событие. То есть такие рёбра, которые сталкиваются в данном событии. Эти цепи упорядочим согласно направлению рёбер (см. рисунок выше).
Мы можем также упорядочить сами цепи вокруг точки события, объединив эти цепи в один циклический список. Таким образом событие получается как бы окружено списком рёбер, которые участвуют в этом событии, и никакие другие рёбра не участвуют. Можно заметить (рисунки выше), что соседние рёбра в списке из изначально разных цепей становятся потом соседними в .
Алгоритм обработки GIE следующий:
- Шаг внутри цепи: в каждой цепи удаляем внутренние рёбра (кроме первого и последнего) — это соответствует тому, что исчезает несколько рёбер, участвующих в одном е. Таким образом остаются цепи только длин или
- Шаг цепи из одного звена: цепи длины разбиваются в точке события (это соответствует простому у). Теперь все цепи имеют длину ровно .
- Шаг межцепной: соединяем соседние цепи (соответствующие одному событию) в циклический список, то есть соединяя конец одной цепи с началом следующей и так далее. То есть мы разбиваем кажду цепь в середине и получаем новые списки длины .
- Шаг циклы из двух рёбер: списки длины состоящие из двух параллельных рёбер, то есть ограничивающие полигон нулевой площади, удаляются из .
- Шаг PCE: разбираемся с согласно принятому нами правилу решения — правила слияния или правила разделения.
Алгоритм построения с помощью Motorcycle graph
Рассмотрим алгоритм построения на основе мотографов.
TODO: Алгоритм на мотографах
Другие алгоритмы
Существует простой в понимании и реализации алгоритм для построения на основе триангуляции, который работает за время [4]. Aichholzer смог обобщить этот алгоритм для построения произвольного планарного графа[5]. Также автором в его оригинальной статье был представлен алгоритм построения данной структуры, базирующийся на понятии волнового фронта (англ. wavefront). Этот алгоритм может быть реализован за время с использованием памяти либо с использованием приоритетной очереди за время и памяти[6]. Известен алгоритм построения для монотонных полигонов за время с использованием памяти[7].
В данном конспект был (P.S. точнее, ещё будет) представлен алгоритм на основе мотографов, который придумали Stefan Huber и Martin Held. Они говорят, что даже смогли реализовать этот алгоритм, но код нигде не выкладывали.
См. также
Примечания
- ↑ Wikipedia — Fold-and-cut theorem
- ↑ Ambiguous weighted skeleton
- ↑ CGAL 4.5 — 2D Straight Skeleton and Polygon Offsetting
- ↑ Stefan Huber, Martin Held, "Straight Skeletons and their Relation to Triangulations"
- ↑ Oswin Aichholzer, Franz Aurenhammera, "Straight Skeletons for General Polygonal Figures in the Plane"
- ↑ Oswin Aichholzer, Franz Aurenhammera, "A Novel Type of Skeleton for Polygons"
- ↑ Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, Peter Palfrader, "Straight Skeletons of Monotone Polygons"
Источники информации
- Wikipedia — Straight skeleton
- Designing roofs and drawing phylogenetic trees
- Eric Berberich, "Straight Skeleton, Computational Geometry and Geometric Computing Seminar"
- Petr Felkel, Stepan Obdrazalek, "Straight Skeleton Implementation"
- Engineering a weighted straight skeleton algorithm
- Визуализатор алгоритма












