Изменения

Перейти к: навигация, поиск

Топологические векторные пространства

488 байт добавлено, 12:13, 18 февраля 2013
Нет описания правки
}}
{{TODOОпределение|tdefinition=отсутствует определение базы окрестностей и ограниченности<tex> A </tex> '''ограничено''', если <tex> \forall U(0)\ \exists \lambda > 0: A \subset \lambda U(0) </tex> (то есть, его поглощает любая окрестность нуля).}}
Существует стандартная конструкция, которая позволяет уравновесить любое множество.
В прямую сторону:
# Рассмотрим отображение <tex> x \mapsto f, f(x + x_0 ) = x</tex>, то есть , сдвиг на <tex> x_0 </tex>. Это отображение взаимно однозначнои непрерывно (так как оно может быть определено через непрерывную по определению ТВП операцию сложения, следовательно непрерывно<tex>f(x) = x - x_0 </tex>). Прообраз открытого множества при непрерывном отображении открыт, то есть , если <tex> G \in \tau </tex> (открыто), то <tex> f^{-1}(G) = G + x_0 </tex> также открыто. То есть получилиПолучили, что векторная топология инвариантна относительно сдвигов.
# Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. <tex> \lambda x \to 0, x \to 0, \lambda \to 0 </tex>, то есть <tex> \forall U(0) \exists \delta > 0, W(0): |\lambda| \le \delta </tex> <tex> x \in W(0) \implies \lambda x \in U(0) \iff \lambda W(0) \subset U(0) \implies \bigcup\limits_{|\lambda| \le \delta} \lambda W(0) \subset U(0) </tex>, где <tex> \lambda W(0) </tex> — уравновешено и окрестность 0.
#: Для радиальности: <tex> \forall x_0 \in X, \lambda \to 0, \lambda x_0 \to 0 x_0 = 0 \implies \forall U(0) \exists \delta > 0: |\lambda| \le \delta, \lambda x_0 \in U(0) </tex>. <tex> x_0 \in {1 \over \lambda} U(0), |\lambda| \le \delta, \left| {1 \over \lambda} \right| \ge {1 \over \delta} </tex>, то есть <tex> U(0) </tex> поглощает <tex> x_0 </tex>.
<tex> \forall \varepsilon > 0 \exists \lambda_1, \lambda_2: p_M(x) < \lambda_1 < p_M(x) + \varepsilon </tex>, <tex> p_M(y) < \lambda_2 < p_M(y) + \varepsilon </tex>, <tex> x \in \lambda_1 M, y \in \lambda_2 M \implies {x \over \lambda_1}, {y \over \lambda_2} \in M </tex>. Рассмотрим <tex> \alpha = {\lambda_1 \over \lambda_1 + \lambda_2}, \beta = {\lambda_2 \over \lambda_1 + \lambda_2} </tex>, заметим, что <tex> \alpha + \beta = 1 </tex>, из выпуклости получим, что <tex> \alpha {x \over \lambda_1} + \beta {y \over \lambda_2} \in M \implies {x + y \over \lambda_1 + \lambda_2} \in M \implies x + y \in (\lambda_1 + \lambda_2) M </tex>, то есть <tex> p_M(x + y) < \lambda_1 + \lambda_2 < p_M(x) + p_M(y) + 2 \varepsilon </tex>, сделав предельный переход, получим <tex> p_M(x + y) \le p_M(x) + p_M(y) </tex>.
Однородность: <tex> p_M(\lambda x) = \inf \{r > 0: \lambda x \in r M \} = \inf \{r > 0: x \in \frac{r}{|\lambda|} M \} </tex> <tex>= \inf \{ | \lambda | \frac{r}{ | \lambda | } > 0: x \in \frac{r}{|\lambda|} M \} = |\lambda| p_M(x) </tex> проверяется аналогично.
}}
|author=Колмогоров
|statement=
[[Хаусдорфово]] ТВП нормируемо тогда и только тогда, когда у нуля есть ограниченная выпуклая окрестность.
|proof=
В прямую сторону: если ТВП нормируемо, то <tex> V_r = \{ x : \| x \| \le 1 \} </tex>
{{TODO|t= далее я что-то не особенно осознал, что происходит. На всякий случай — доказательство вроде есть в Люстернике-Соболеве, стр 94, правда оно несколько другое вроде}}
В обратную: пусть <tex> V </tex> — ограниченная выпуклая окрестность нуля. <tex> W </tex> — радиальная уравновешенная) окрестность 0: <tex> W \subset V </tex>, <tex> \mathrm{Cov} W </tex> — выпуклая оболочка множества <tex> W </tex>, <tex> V </tex> — выпуклая, <tex> \mathrm{Cov} W \subset V </tex>, <tex> \mathrm{Cov} W </tex> — радиальное уравновешенное множество, так как <tex> W </tex> — такое же. Из ограниченности <tex> V </tex> следует ограниченность <tex> \mathrm{Cov} W </tex>, то есть, мы построили <tex> V^* = \mathrm{Cov} W </tex> — радиальную уравновешенную выпуклую окрестность <tex> 0 </tex>.
Анонимный участник

Навигация