Динамическое программирование — различия между версиями
IRomchig (обсуждение | вклад) |
|||
Строка 34: | Строка 34: | ||
== Принцип оптимальности на подотрезках== | == Принцип оптимальности на подотрезках== | ||
− | Требуется посчитать функцию $f(1, n)$. Принцип состоит в следующем: пусть на для всех отрезков $i$, $j$ (где <tex> u \le i \le j \le v </tex>) известен оптимальный ответ для функции $f(i, j)$. Тогда будем пересчитывать $f(u, v)$ через такие $f(i, j)$. | + | Требуется посчитать функцию $f(1, n)$. Принцип состоит в следующем: пусть на для всех отрезков $i$, $j$ (где <tex> u \le i \le j \le v </tex>) известен оптимальный ответ для функции $f(i, j)$. Тогда будем пересчитывать $f(u, v)$ через такие $f(i, j)$. Тогда мы будем вычислять $f(u, v)$ через такие $f(i, j)$. В качестве примера рассмотрим следующую классическую задачу: дана строка длины n, нужно найти максимальный подпалиндром (подпоследовательность максимальной длины, которая является палиндромом). Пусть $d(i, j)$ - ответ на задачу для подстроки, начинающаяся с символа $i$ и заканчивающаяся в символе $j$. Ясно, что $d(i, j) = 0$ для всех $i, j,$ что $i > j$ и $d(i, i) = 1$ для всех $i$. Пусть нам нужно посчитать значение для $d(i, j)$, причем значение $d$ для всех $l, r$, что <tex> i \le l \le r \le j </tex> уже посчитаны и они оптимальны. Рассмотрим два случая: <br /> |
− | : <tex> d(i, j) = | + | : 1) <tex> s(i) \neq s(j), тогда d(i, j) = max/(d(i, j - 1), d(i + 1, j)) </tex> <br /> |
− | + | : 2) <tex> s(i) = s(j), тогда d(i, j) = d(i + 1, j - 1) + 2 </tex> <br /> | |
− | + | Доказательство: (прим. мп - максимальный подпвлиндром) <br /> | |
− | + | 1) Так <tex>s(i) \neq s(j)</tex>, символы $s(i)$ и $s(j)$ не могут входит в мп одновременно, то есть либо $s(i)$ входят в мп (тогда его длина $d[i, j - 1]$), либо $s(j)$ входи в мп (тогда его длина $d[i + 1, j]$), либо оба не входят в мп (тогда его длина $= d[i, j - 1] = d[i + 1, j]$). <br /> | |
+ | 2) Данное равенство следует из факта, что выгодно включить в мп символы $s(i)$ и $s(j)$. | ||
=== Примеры задач === | === Примеры задач === |
Версия 14:19, 29 февраля 2012
<wikitex>
Содержание
Процесс разработки алгоритмов динамического программирования
В процессе составления алгоритмов динамического программирования, требуется следовать последовательности из четырёх действий:
- Описать структуру оптимального решения
- Рекурсивно определить значение оптимального решения
- Вычислить значение оптимального решения с помощью метода восходящего анализа
- Составить оптимального решения на основе полученной информации
Оптимальная подструктура
Задача имеет оптимальную подструктуру, если её оптимальное решение может быть рационально составлено из оптимальных решений её подзадач. Наличие оптимальной подструктуры в задаче используется для определения применимости динамического программирования и жадных алгоритмов для решения оной. Например, задача по нахождению кратчайшего пути между некоторыми вершинами графа содержит в себе оптимальное решение подзадач.
Многие задачи, решаемые динамическим программированием, можно определить как поиск в заданном ориентированном ациклическом графе кратчайшего пути от одной вершины к другой.
Отсутствие оптимальной подструктуры
Иногда оптимальная подструктура может отсутствовать в задаче. Рассмотрим задачу, в которой имеется ориентированный граф $G = (V, E)$ и вершины $u, v \in V$, задачу по определению простого пути от вершины $u$ к вершине $v$, состоящий из максимального количества рёбер.
Рассмотрим путь $q \rightarrow r \rightarrow t$, который является самым длинным простым путем $q \rightsquigarrow t$. Является ли путь $q \rightarrow r$ самым длинным путем $q \rightsquigarrow r$? Нет, поскольку простой путь $q \rightarrow s \rightarrow t \rightarrow r$ длиннее. Является ли путь $r \rightarrow t$ самым длинным путем $r \rightsquigarrow t$? Снова нет, поскольку простой путь $r \rightarrow q \rightarrow s \rightarrow t$ длиннее. Таким образом, в задаче о поиске самого длинного невзвешенного пути не возникает никаких оптимальных подструктур. Для этой задачи до сих пор не найдено ни одного эффективного алгоритма, работающего по принципу динамического программирования. Фактически, это NP-полная задача, т.е. вряд ли ее можно решить в течение полиномиального времени.
Оптимальность для подзадач
Важнейшее свойство задач, которое позволяет решать их с помощью динамического программирования, это оптимальность для подзадач. В зависимости от формулировки задачи, будь то динамическое программирование на отрезке, на префиксе, на дереве, термин оптимальности для подзадач может быть различным, но, в целом, формулируется так: если есть оптимальное решение для некоторой подзадачи, которая возникает в процессе решения задачи, то именно его нужно использовать для решения задачи в целом
Принцип оптимальности на префиксе
Рассмотрим некий необратимый процесс производства и представим его в виде ориентированного и ациклического графа. Процесс проходит некий ряд состояний. Началом производства (первым состоянием) обозначим вершину графа $S$, а конец производства (последнее состояние) $T$. Процесс требует оптимизации, т.е. требуется найти оптимальный путь $S \rightsquigarrow T$. Он проходит через вершину графа $U$. Префикс оптимального пути $S \rightsquigarrow U$ является оптимальным путём $S \rightsquigarrow U$. Теперь рассмотрим принцип оптимальности для динамического программирования на префиксе. Итак, имеем некоторый оптимальный путь $S \rightsquigarrow T$, который проходит через $U$. Пусть префикс $ \Delta U$, т.е. путь от $S \rightsquigarrow U$, неоптимален. Тогда заменим неоптимальную часть $S \rightsquigarrow U$ пути $S \rightsquigarrow T$ оптимальной, а путь $U \rightsquigarrow T$ добавим в конец. Получим оптимальный путь $S \rightsquigarrow T$. Принцип оптимальности для подзадач выполняется. Т.е. чтобы получить оптимальный путь из одной вершины графа в другую, префиксы меньших путей должны быть оптимальными.
Примеры задач
Принцип оптимальности на подотрезках
Требуется посчитать функцию $f(1, n)$. Принцип состоит в следующем: пусть на для всех отрезков $i$, $j$ (где
- 1)
- 2)
Доказательство: (прим. мп - максимальный подпвлиндром)
1) Так , символы $s(i)$ и $s(j)$ не могут входит в мп одновременно, то есть либо $s(i)$ входят в мп (тогда его длина $d[i, j - 1]$), либо $s(j)$ входи в мп (тогда его длина $d[i + 1, j]$), либо оба не входят в мп (тогда его длина $= d[i, j - 1] = d[i + 1, j]$).
2) Данное равенство следует из факта, что выгодно включить в мп символы $s(i)$ и $s(j)$.
Примеры задач
Принцип оптимальности на подмножествах
Ссылки
- Т. Кормен. «Алгоритмы. Построение и анализ» второе издание, Глава 15
- T. H. Cormen. «Introduction to Algorithms» third edition, Chapter 15
- Wikipedia
</wikitex>