Задача о расстоянии Дамерау-Левенштейна — различия между версиями
Shersh (обсуждение | вклад) (→Корректный алгоритм) |
Ильнар (обсуждение | вклад) |
||
Строка 28: | Строка 28: | ||
j&&;&i = 0,\ j > 0\\ | j&&;&i = 0,\ j > 0\\ | ||
D(i - 1, j - 1)&&;&S[i] = T[j]\\ | D(i - 1, j - 1)&&;&S[i] = T[j]\\ | ||
− | \min{\ | + | \min{(}\\ |
− | D(i, j - 1) + insertCost\\ | + | \qquad\ D(i, j - 1) + insertCost\\ |
− | + | \qquad\ D(i - 1, j) + deleteCost&&;&j > 0,\ i > 0,\ S[i] \ne T[j]\\ | |
− | D(i - 1, j | + | \qquad\ D(i - 1, j - 1) + replaceCost\\ |
− | + | ) | |
\end{array}\right. | \end{array}\right. | ||
</tex> | </tex> | ||
Строка 76: | Строка 76: | ||
==Корректный алгоритм== | ==Корректный алгоритм== | ||
− | В основу алгоритма положена идея динамического программирования по префиксу. Будем хранить матрицу <tex>D[0..M + 1][0..N + 1]</tex>, где <tex>D[i + 1][j + 1]</tex> {{---}} расстояние Дамерау-Левенштейна между префиксами строк <tex>S</tex> и <tex>T</tex>, длины префиксов {{---}} <tex>i</tex> и <tex>j</tex> соответственно. | + | В основу алгоритма положена идея [[Динамическое программирование#.D0.9F.D1.80.D0.B8.D0.BD.D1.86.D0.B8.D0.BF_.D0.BE.D0.BF.D1.82.D0.B8.D0.BC.D0.B0.D0.BB.D1.8C.D0.BD.D0.BE.D1.81.D1.82.D0.B8_.D0.BD.D0.B0_.D0.BF.D1.80.D0.B5.D1.84.D0.B8.D0.BA.D1.81.D0.B5|динамического программирования по префиксу]]. Будем хранить матрицу <tex>D[0..M + 1][0..N + 1]</tex>, где <tex>D[i + 1][j + 1]</tex> {{---}} расстояние Дамерау-Левенштейна между префиксами строк <tex>S</tex> и <tex>T</tex>, длины префиксов {{---}} <tex>i</tex> и <tex>j</tex> соответственно. |
Для учёта транспозиции потребуется хранение следующей информации. Инвариант: | Для учёта транспозиции потребуется хранение следующей информации. Инвариант: | ||
Строка 95: | Строка 95: | ||
j&&;&i = 0,\ j > 0\\ | j&&;&i = 0,\ j > 0\\ | ||
D(i - 1, j - 1)&&;&S[i] = T[j]\\ | D(i - 1, j - 1)&&;&S[i] = T[j]\\ | ||
− | \min{\ | + | \min{(}\\ |
− | D(i, j - 1) + insertCost\\ | + | \qquad\ D(i, j - 1) + insertCost\\ |
− | + | \qquad\ D(i - 1, j) + deleteCost&&;&j > 0,\ i > 0,\ S[i] \ne T[j]\\ | |
− | D(i - 1, j | + | \qquad\ D(i - 1, j - 1) + replaceCost\\ |
− | + | ) | |
\end{array}\right. | \end{array}\right. | ||
</tex> | </tex> | ||
Строка 109: | Строка 109: | ||
Тогда если символ <tex>S[i]</tex> встречался в <tex>T[1]..T[j]</tex> на позиции <tex>j'</tex>, а символ <tex>T[j]</tex> встречался в <tex>S[1]..S[i]</tex> на позиции <tex>i'</tex>; то <tex>T[1]..T[j]</tex> может быть получена из <tex>S[1]..S[i]</tex> удалением символов <tex>S[i' + 1]..S[i - 1]</tex>, транспозицией ставших соседними <tex>S[i']</tex> и <tex>S[i]</tex> и вставкой символов <tex>T[j' + 1]..T[j - 1]</tex>. Суммарно на это будет затрачено <tex>D(i', j') + (i - i' - 1) \cdot deleteCost + transposeCost + (j - j' - 1) \cdot insertCost</tex> операций, что описано в <tex>(*)</tex>. Поэтому мы выбирали оптимальную последовательность операций, рассмотрев случай с транспозицией и без неё. | Тогда если символ <tex>S[i]</tex> встречался в <tex>T[1]..T[j]</tex> на позиции <tex>j'</tex>, а символ <tex>T[j]</tex> встречался в <tex>S[1]..S[i]</tex> на позиции <tex>i'</tex>; то <tex>T[1]..T[j]</tex> может быть получена из <tex>S[1]..S[i]</tex> удалением символов <tex>S[i' + 1]..S[i - 1]</tex>, транспозицией ставших соседними <tex>S[i']</tex> и <tex>S[i]</tex> и вставкой символов <tex>T[j' + 1]..T[j - 1]</tex>. Суммарно на это будет затрачено <tex>D(i', j') + (i - i' - 1) \cdot deleteCost + transposeCost + (j - j' - 1) \cdot insertCost</tex> операций, что описано в <tex>(*)</tex>. Поэтому мы выбирали оптимальную последовательность операций, рассмотрев случай с транспозицией и без неё. | ||
− | Корректный алгоритм Дамерау-Левенштейна будет являться метрикой: <tex>\mathtt{DLD}(S,\ V) + \mathtt{DLD}(V,\ T) \geqslant \mathtt{DLD}(S,\ T)</tex>. | + | Корректный алгоритм Дамерау-Левенштейна будет являться метрикой: <tex>\mathtt{DLD}(S,\ V) + \mathtt{DLD}(V,\ T) \geqslant \mathtt{DLD}(S,\ T)</tex>. Предположим обратное: <tex>\mathtt{DLD}(S,\ V) + \mathtt{DLD}(V,\ T) < \mathtt{DLD}(S,\ T)</tex>, тогда приходим к противоречию, так как <tex>\mathtt{DLD}(S,\ T)</tex> является минимальным ответом. |
Сложность алгоритма: <tex>O\left (M \cdot N \cdot \max{(M, N)} \right )</tex>. Затраты памяти: <tex>O\left (M \cdot N \right)</tex>. Однако скорость работы алгоритма может быть улучшена до <tex>O\left (M \cdot N \right)</tex>. | Сложность алгоритма: <tex>O\left (M \cdot N \cdot \max{(M, N)} \right )</tex>. Затраты памяти: <tex>O\left (M \cdot N \right)</tex>. Однако скорость работы алгоритма может быть улучшена до <tex>O\left (M \cdot N \right)</tex>. | ||
Строка 128: | Строка 128: | ||
''<font color=green>// База индукции</font>'' | ''<font color=green>// База индукции</font>'' | ||
− | D[0][0] = INF | + | D[0][0] = INF |
'''for''' i = 0 '''to''' M | '''for''' i = 0 '''to''' M | ||
D[i + 1][1] = i | D[i + 1][1] = i | ||
Строка 136: | Строка 136: | ||
D[0][j + 1] = INF | D[0][j + 1] = INF | ||
− | lastPosition[0..количество различных символов в S и T] | + | i', j', last: '''int''' |
+ | lastPosition: '''int[0..количество различных символов в S и T]''' | ||
''<font color=green>//для каждого элемента C алфавита задано значение lastPosition[C]</font>'' | ''<font color=green>//для каждого элемента C алфавита задано значение lastPosition[C]</font>'' | ||
Строка 143: | Строка 144: | ||
'''for''' i = 1 '''to''' M | '''for''' i = 1 '''to''' M | ||
− | last = 0 | + | last = 0 |
'''for''' j = 1 '''to''' N | '''for''' j = 1 '''to''' N | ||
− | i' = lastPosition[T[j]] | + | i' = lastPosition[T[j]] |
− | j' = last | + | j' = last |
'''if''' S[i] == T[j] | '''if''' S[i] == T[j] | ||
D[i + 1][j + 1] = D[i][j] | D[i + 1][j + 1] = D[i][j] |
Версия 22:28, 16 декабря 2014
Определение: |
Расстояние Дамерау-Левенштейна (англ. Damerau-Levenshtein distance) между двумя строками, состоящими из конечного числа символов — это минимальное число операций вставки, удаления, замены одного символа и транспозиции двух соседних символов, необходимых для перевода одной строки в другую. |
Является модификацией расстояния Левенштейна, отличается от него добавлением операции перестановки.
Содержание
Практическое применение
Расстояние Дамерау-Левенштейна, как и метрика Левенштейна, является мерой "схожести" двух строк. Алгоритм его поиска находит применение в реализации нечёткого поиска, а также в биоинформатике (сравнение ДНК), несмотря на то, что изначально алгоритм разрабатывался для сравнения текстов, набранных человеком (Дамерау показал, что 80% человеческих ошибок при наборе текстов составляют перестановки соседних символов, пропуск символа, добавление нового символа, и ошибка в символе. Поэтому метрика Дамерау-Левенштейна часто используется в редакторских программах для проверки правописания).
Упрощённый алгоритм
Не решает задачу корректно, но бывает полезен на практике.
Здесь и далее будем использовать следующие обозначения:
и — строки, между которыми требуется найти расстояние Дамерау-Левенштейна; и — их длины соответственно.Рассмотрим алгоритм, отличающийся от алгоритма поиска расстояния Левенштейна одной проверкой (храним матрицу
, где — расстояние между префиксами строк: первыми символами строки и первыми символами строки ). Рекуррентное соотношение имеет вид:Ответ на задачу —
, где
Таким образом для получения ответа необходимо заполнить матрицу
, пользуясь рекуррентным соотношением. Сложность алгоритма: . Затраты памяти: .Псевдокод алгоритма:
int DamerauLevenshteinDistance(S: char[1..M], T: char[1..N]; deleteCost, insertCost, replaceCost, transposeCost: int): d = int[0..M][0..N] // База динамики for i = 0 to M d[i][0] = i for j = 1 to N d[0][j] = j for i = 1 to M for j = 1 to N // Стоимость замены if S[i] == T[j] d[i][j] = d[i - 1][j - 1] else d[i][j] = d[i - 1][j - 1] + replaceCost d[i][j] = min( d[i][j], // замена d[i - 1][j ] + deleteCost, // удаление d[i ][j - 1] + insertCost // вставка ) if(i > 1 and j > 1 and S[i] == T[j - 1] and S[i - 1] == T[j]) d[i][j] = min( d[i][j], d[i - 2][j - 2] + transposeCost // транспозиция ) return d[M][N]
Контрпример:
и . Расстояние Дамерау-Левенштейна между строками равно , однако функция приведённая выше возвратит . Дело в том, что использование этого упрощённого алгоритма накладывает ограничение: любая подстрока может быть редактирована не более одного раза. Поэтому переход невозможен, и последовательность действий такая: .Упрощенный алгоритм Дамерау-Левенштейна не является метрикой, так как не выполняется правило треугольника:
.Условие многих практических задач не предполагает многократного редактирования подстрок, поэтому часто достаточно упрощённого алгоритма. Ниже представлен более сложный алгоритм, который корректно решает задачу поиска расстояния Дамерау-Левенштейна.
Корректный алгоритм
В основу алгоритма положена идея динамического программирования по префиксу. Будем хранить матрицу , где — расстояние Дамерау-Левенштейна между префиксами строк и , длины префиксов — и соответственно.
Для учёта транспозиции потребуется хранение следующей информации. Инвариант:
— индекс последнего вхождения в
— на -й итерации внешнего цикла индекс последнего символа
Тогда если на очередной итерации внутреннего цикла положить:
, то
, где
Доказательства требует лишь формула алгоритма Вагнера-Фишера. Но действительно, при редактировании подпоследовательности несколько раз всегда существует оптимальная последовательность операций одного из двух видов:
, смысл которой — сравнение стоимости перехода без использования транспозиции со стоимостью перехода, включающего в число операций транспозицию; остальные формулы обосновываются так же, как и в доказательстве- Переставить местами соседние символы, затем вставить некоторое количество символов между ними;
- Удалить некоторое количество символов, а затем переставить местами символы, ставшие соседними.
Тогда если символ
встречался в на позиции , а символ встречался в на позиции ; то может быть получена из удалением символов , транспозицией ставших соседними и и вставкой символов . Суммарно на это будет затрачено операций, что описано в . Поэтому мы выбирали оптимальную последовательность операций, рассмотрев случай с транспозицией и без неё.Корректный алгоритм Дамерау-Левенштейна будет являться метрикой:
. Предположим обратное: , тогда приходим к противоречию, так как является минимальным ответом.Сложность алгоритма:
. Затраты памяти: . Однако скорость работы алгоритма может быть улучшена до .Псевдокод алгоритма:
int DamerauLevenshteinDistance(S: char[1..M], T: char[1..N]; deleteCost, insertCost, replaceCost, transposeCost: int): // Обработка крайних случаев if (S == "") if (T == "") return 0 else return N else if (T == "") return M D = int[0..M][0..N] // Динамика INF = M + N // Большая константа // База индукции D[0][0] = INF for i = 0 to M D[i + 1][1] = i D[i + 1][0] = INF for j = 0 to N D[1][j + 1] = j D[0][j + 1] = INF i', j', last: int lastPosition: int[0..количество различных символов в S и T] //для каждого элемента C алфавита задано значение lastPosition[C] foreach (char Letter in (S + T)) lastPosition[Letter] = 0 for i = 1 to M last = 0 for j = 1 to N i' = lastPosition[T[j]] j' = last if S[i] == T[j] D[i + 1][j + 1] = D[i][j] last = j else D[i + 1][j + 1] = min(D[i][j] + replaceCost, D[i + 1][j] + insertCost, D[i][j + 1] + deleteCost) D[i + 1][j + 1] = min(D[i + 1][j + 1], D[i'][j'] + (i - i' - 1)deleteCost + transposeCost + (j - j' - 1) insertCost) lastPosition[S[i]] = i return D[M + 1][N + 1]
См. также
- Задача о наибольшей общей подпоследовательности
- Задача о выводе в контекстно-свободной грамматике, алгоритм Кока-Янгера-Касами
- Динамическое программирование по профилю
Источники информации
- Wikipedia — Damerau-Levenshtein distance
- Википедия — Расстояние Дамерау-Левенштейна
- Хабрахабр — Нечёткий поиск в тексте и словаре
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 3-е изд. — М.: «Вильямс», 2013. — с. 440. — ISBN 978-5-8459-1794-2