Метод Лупанова синтеза схем — различия между версиями
Строка 1: | Строка 1: | ||
{{ | {{ | ||
Теорема|statement= | Теорема|statement= | ||
− | Любая [[Определение булевой функции | булева функция]] от <tex>n</tex> аргументов <tex>f(x_1, x_2, | + | Любая [[Определение булевой функции | булева функция]] от <tex>n</tex> аргументов <tex>f(x_1, x_2, \ldots, x_n)</tex> в базисе <tex>B = \{\neg, \lor, \land\}</tex> имеет [[Реализация булевой функции схемой из функциональных элементов#Схемная сложность | схемную сложность]] <tex>size_B (f) = O\left(\dfrac{2^n}{n}\right)</tex>. |
}} | }} | ||
Строка 11: | Строка 11: | ||
== Разделение на полосы == | == Разделение на полосы == | ||
− | Разделим таблицу на '''''горизонтальные полосы''''' шириной <tex>s</tex> (последняя полоса, возможно, будет короче остальных; её ширину обозначим <tex>s'</tex>). Пронумеруем полосы сверху вниз от 1 до <tex dpi="145">p=\left\lceil\dfrac{2^k}{s}\right\rceil</tex>. | + | Разделим таблицу на '''''горизонтальные полосы''''' шириной <tex>s</tex> (последняя полоса, возможно, будет короче остальных; её ширину обозначим <tex>s'</tex>). Пронумеруем полосы сверху вниз от <tex>1</tex> до <tex dpi="145">p=\left\lceil\dfrac{2^k}{s}\right\rceil</tex>. |
Рассмотрим независимо некоторую полосу. Заметим, что среди её столбцов при небольшом <tex>s</tex> будет много повторений; далее про одинаковые столбцы, находящиеся в одной полосе, будем говорить, что они одного '''''сорта'''''. | Рассмотрим независимо некоторую полосу. Заметим, что среди её столбцов при небольшом <tex>s</tex> будет много повторений; далее про одинаковые столбцы, находящиеся в одной полосе, будем говорить, что они одного '''''сорта'''''. | ||
Строка 24: | Строка 24: | ||
Пусть для некоторого <tex>i</tex> | Пусть для некоторого <tex>i</tex> | ||
* <tex>\beta_{j}</tex> {{---}} произвольный столбец <tex>i</tex>-й полосы <tex>j</tex>-го сорта (точное положение столбца далее не будет иметь значения, по определению сорта) | * <tex>\beta_{j}</tex> {{---}} произвольный столбец <tex>i</tex>-й полосы <tex>j</tex>-го сорта (точное положение столбца далее не будет иметь значения, по определению сорта) | ||
− | * <tex>(\sigma_1^l, \sigma_2^l, | + | * <tex>(\sigma_1^l, \sigma_2^l, \ldots, \sigma_k^l)</tex> {{---}} аргументы функции, соответствующие <tex>l</tex>-й строке <tex>i</tex>-й полосы. |
Тогда введём булеву функцию | Тогда введём булеву функцию | ||
− | <tex>g_{ij}(x_1, x_2, | + | <tex>g_{ij}(x_1, x_2, \ldots, x_k) = \begin{cases} |
− | \beta_{jl}, \mbox{ if } \exists l \in [1; s]~(x_1, x_2, | + | \beta_{jl}, \mbox{ if } \exists l \in [1; s]~(x_1, x_2, \ldots, x_k) = (\sigma_1^l, \sigma_2^l, \ldots, \sigma_k^l) \\ |
0, \mbox{ otherwise} | 0, \mbox{ otherwise} | ||
\end{cases}</tex> | \end{cases}</tex> | ||
− | Другими словами, если строка, соответствующая аргументам функции <tex>x_1, x_2, | + | Другими словами, если строка, соответствующая аргументам функции <tex>x_1, x_2, \ldots, x_k</tex>, находится в <tex>i</tex>-й полосе, то функция возвращает значение, записанное в столбце сорта <tex>j</tex> для этой строки. Если же эта строка находится в другой полосе, то функция вернёт <tex>0</tex>. Иллюстрация принципа работы функции <tex>g_{ij}</tex> приведена на рис. 2. |
=== Вывод исходной функции для фиксированной части параметров === | === Вывод исходной функции для фиксированной части параметров === | ||
− | Поскольку изначальный столбец <tex>(\sigma_{k + 1}, \sigma_{k + 2}, | + | Поскольку изначальный столбец <tex>(\sigma_{k + 1}, \sigma_{k + 2}, \ldots, \sigma_{n})</tex> складывается из столбцов соответствующих сортов в полосах, |
− | <tex dpi="145">f(x_1, x_2, | + | <tex dpi="145">f(x_1, x_2, \ldots, x_k, \sigma_{k + 1}, \sigma_{k + 2}, \ldots, \sigma_{n}) = \bigvee\limits_{i = 1}^p g_{ij_i}(x_1, x_2, \ldots, x_k)</tex>, |
− | где <tex>j_i</tex> {{---}} номер сорта столбца полосы <tex>i</tex>, являющегося соответствующей частью столбца <tex>(\sigma_{k + 1}, \sigma_{k + 2}, | + | где <tex>j_i</tex> {{---}} номер сорта столбца полосы <tex>i</tex>, являющегося соответствующей частью столбца <tex>(\sigma_{k + 1}, \sigma_{k + 2}, \ldots, \sigma_{n})</tex>. |
== Мультиплексор и дешифратор == | == Мультиплексор и дешифратор == | ||
Строка 51: | Строка 51: | ||
* булево значение <tex>z</tex>; | * булево значение <tex>z</tex>; | ||
* <tex>n</tex>-значное число <tex>x</tex> в двоичном представлении | * <tex>n</tex>-значное число <tex>x</tex> в двоичном представлении | ||
− | и выводящий <tex>z</tex> на <tex>x</tex>-й из своих <tex>2^n</tex> выходов. На все остальные выходы элемент выдаёт 0. | + | и выводящий <tex>z</tex> на <tex>x</tex>-й из своих <tex>2^n</tex> выходов. На все остальные выходы элемент выдаёт <tex>0</tex>. |
}} | }} | ||
{| | {| | ||
Строка 60: | Строка 60: | ||
== Доказательство == | == Доказательство == | ||
− | В качестве доказательства ниже будет предложен вариант такой схемы для произвольной функции <tex>f(x_1, x_2, | + | В качестве доказательства ниже будет предложен вариант такой схемы для произвольной функции <tex>f(x_1, x_2, \ldots, x_n)</tex> (представление Лупанова, ''англ.'' Lupanov <tex>(k, s)</tex>-representation). |
[[Файл:Lupanov_scheme.png|550px|Иллюстрация частного случая представления Лупанова, описанного здесь]] | [[Файл:Lupanov_scheme.png|550px|Иллюстрация частного случая представления Лупанова, описанного здесь]] | ||
Для удобства поделим схему на блоки: | Для удобства поделим схему на блоки: | ||
− | * '''Блок A''' {{---}} дешифратор, которому на вход подали 1 и <tex>(x_1, x_2, | + | * '''Блок A''' {{---}} дешифратор, которому на вход подали <tex>1</tex> и <tex>(x_1, x_2, \ldots, x_k)</tex> в качестве двоичного представления числа. |
− | * '''Блок B''' {{---}} схемная реализация всех <tex>g_{ij}</tex>. Функцию <tex>g_{ij}</tex> можно реализовать как <tex dpi="145">\bigvee\limits_{\beta_l = 1} y_{il}</tex>, где <tex>y_{il}</tex> {{---}} выдал ли дешифратор | + | * '''Блок B''' {{---}} схемная реализация всех <tex>g_{ij}</tex>. Функцию <tex>g_{ij}</tex> можно реализовать как <tex dpi="145">\bigvee\limits_{\beta_l = 1} y_{il}</tex>, где <tex>y_{il}</tex> {{---}} выдал ли дешифратор <tex>1</tex> на <tex>l</tex>-м выходе <tex>i</tex>-й полосы. |
− | * '''Блок C''' {{---}} схемная реализация всех <tex>f(x_1, x_2, | + | * '''Блок C''' {{---}} схемная реализация всех <tex>f(x_1, x_2, \ldots, x_k, \sigma_{k + 1}, \sigma_{k + 2}, \ldots, \sigma_n)</tex>. ''(здесь <tex>\sigma_i</tex> - фиксированные параметры, см. п. 3.1)'' |
− | * '''Блок D''' {{---}} мультиплексор, получающий на вход все <tex>f(x_1, x_2, | + | * '''Блок D''' {{---}} мультиплексор, получающий на вход все <tex>f(x_1, x_2, \ldots, x_k, \sigma_{k + 1}, \sigma_{k + 2}, \ldots, \sigma_n)</tex> и параметры функции <tex>x_{k + 1}, x_{k + 2}, \ldots, x_n</tex> в качестве двоичного представления числа. '''''Результат работы схемы''''' {{---}} вывод мультиплексора. |
Положим <tex>s = \lfloor n - 2\log_2 n\rfloor</tex>; <tex>k = \lfloor\log_2 n\rfloor</tex>. Тогда число элементов в блоках | Положим <tex>s = \lfloor n - 2\log_2 n\rfloor</tex>; <tex>k = \lfloor\log_2 n\rfloor</tex>. Тогда число элементов в блоках | ||
* <tex>L_A = O(2^k) = O(2^{\log_2 n}) = O(n)</tex> | * <tex>L_A = O(2^k) = O(2^{\log_2 n}) = O(n)</tex> | ||
− | * <tex>L_B \leqslant (s - 1) \cdot (t(1) + t(2) + | + | * <tex>L_B \leqslant (s - 1) \cdot (t(1) + t(2) + \ldots + t(p)) < sp \cdot 2^s = n \cdot \dfrac{2^n}{n^2} = \dfrac{2^n}{n}</tex> |
* <tex>L_C = O(p \cdot 2^{n - k}) = O\left(\dfrac{p}{n} \cdot 2^n\right) = O\left(\dfrac{2^n}{s}\right) = O\left(\dfrac{2^n}{n - 2\log_2 n}\right)</tex> | * <tex>L_C = O(p \cdot 2^{n - k}) = O\left(\dfrac{p}{n} \cdot 2^n\right) = O\left(\dfrac{2^n}{s}\right) = O\left(\dfrac{2^n}{n - 2\log_2 n}\right)</tex> | ||
* <tex>L_D = O(2^{n - k}) = O\left(\dfrac{2^n}{n}\right)</tex> | * <tex>L_D = O(2^{n - k}) = O\left(\dfrac{2^n}{n}\right)</tex> | ||
− | Итого, имеем схему c числом элементов <tex>L_A + L_B + L_C + L_D = O(n) + O\left(\frac{2^n}{n}\right) + O\left(\dfrac{2^n}{n - 2\log_2 n}\right) + O\left(\dfrac{2^n}{n}\right) = O\left(\dfrac{2^n}{n}\right)</tex>, откуда следует, что <tex>size_B (f) = O\left(\dfrac{2^n}{n}\right)</tex>, | + | Итого, имеем схему c числом элементов <tex>L_A + L_B + L_C + L_D = O(n) + O\left(\frac{2^n}{n}\right) + O\left(\dfrac{2^n}{n - 2\log_2 n}\right) + O\left(\dfrac{2^n}{n}\right) = O\left(\dfrac{2^n}{n}\right)</tex>, откуда следует, что <tex>size_B (f) = O\left(\dfrac{2^n}{n}\right)</tex>, что и требовалось доказать. |
== См. также == | == См. также == | ||
Строка 83: | Строка 83: | ||
*[[Контактная_схема|Контактная схема]] | *[[Контактная_схема|Контактная схема]] | ||
− | |||
− | |||
== Источник информации == | == Источник информации == |
Версия 15:50, 28 декабря 2017
Теорема: |
Любая булева функция от аргументов в базисе имеет схемную сложность . |
Содержание
Представление функции
Поделим аргументы функции на два блока: первые
и оставшиеся .Для удобства дальнейших рассуждений представим булеву функцию в виде таблицы, изображённой на рис. 1. Строки индексируются значениями первых
переменных, столбцы — значениями оставшихся ; таким образом, на пересечении столбца и строки находится значение функции для соответствующего набора аргументов.Разделение на полосы
Разделим таблицу на горизонтальные полосы шириной
(последняя полоса, возможно, будет короче остальных; её ширину обозначим ). Пронумеруем полосы сверху вниз от до .Рассмотрим независимо некоторую полосу. Заметим, что среди её столбцов при небольшом
будет много повторений; далее про одинаковые столбцы, находящиеся в одной полосе, будем говорить, что они одного сорта.Определение: |
Сорт некоторого столбца данной полосы — его класс эквивалентности по отношению поэлементного равенства столбцов данной полосы. |
Число сортов столбцов
-й полосы обозначим как . Понятно, что для любой полосы (для последней ).Функция для одной полосы
Пусть для некоторого
- — произвольный столбец -й полосы -го сорта (точное положение столбца далее не будет иметь значения, по определению сорта)
- — аргументы функции, соответствующие -й строке -й полосы.
Тогда введём булеву функцию
Другими словами, если строка, соответствующая аргументам функции
, находится в -й полосе, то функция возвращает значение, записанное в столбце сорта для этой строки. Если же эта строка находится в другой полосе, то функция вернёт . Иллюстрация принципа работы функции приведена на рис. 2.Вывод исходной функции для фиксированной части параметров
Поскольку изначальный столбец
складывается из столбцов соответствующих сортов в полосах, , где — номер сорта столбца полосы , являющегося соответствующей частью столбца .Мультиплексор и дешифратор
Для упрощения доказательства теоремы будем использовать элементы мультиплексор и дешифратор.
Определение: |
Мультиплексор (англ. multiplexer) — логический элемент, получающий на вход
|
Определение: |
Дешифратор (или демультиплексор, англ. demultiplexer) — логический элемент, получающий на вход
|
Оба элемента представимы схемами с числом элементов
с помощью базиса . Доказательство этого факта у читателя будет возможность рассказать на практике.Доказательство
В качестве доказательства ниже будет предложен вариант такой схемы для произвольной функции
(представление Лупанова, англ. Lupanov -representation).Для удобства поделим схему на блоки:
- Блок A — дешифратор, которому на вход подали и в качестве двоичного представления числа.
- Блок B — схемная реализация всех . Функцию можно реализовать как , где — выдал ли дешифратор на -м выходе -й полосы.
- Блок C — схемная реализация всех . (здесь - фиксированные параметры, см. п. 3.1)
- Блок D — мультиплексор, получающий на вход все и параметры функции в качестве двоичного представления числа. Результат работы схемы — вывод мультиплексора.
Положим
; . Тогда число элементов в блокахИтого, имеем схему c числом элементов
, откуда следует, что , что и требовалось доказать.См. также
- Реализация булевой функции схемой из функциональных элементов
- Простейшие методы синтеза схем из функциональных элементов
- Контактная схема
Источник информации
- Яблонский С.В. Введение в дискретную математику — М.:"Наука", 1986 — стр. 361