Задача о счастливых билетах — различия между версиями
(→Решение с помощью формулы включения-исключения) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 3 промежуточные версии 2 участников) | |||
Строка 21: | Строка 21: | ||
== Решение путем интегрирования == | == Решение путем интегрирования == | ||
− | Рассмотрим многочлен Лорана (т.е. многочлен, в котором допускаются отрицательные степени) <tex>H(z)=G^3(z)G^3(1/z)</tex>. Заметим, что его свободный член равен <tex>\sum\limits_{i=0}^{27}[z^i]G^3(z)\cdot [z^{-i}]G^3(z^{-1})=\sum\limits_{i=0}^{27}(D_3^i)^2</tex>. Воспользуемся теоремой Коши <ref>[https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%9A%D0%BE%D1%88%D0%B8 Интегральная формула Коши — Википедия] | + | Рассмотрим многочлен Лорана (т.е. многочлен, в котором допускаются отрицательные степени) <tex>H(z)=G^3(z)G^3(1/z)</tex>. Заметим, что его свободный член равен <tex>\displaystyle\sum\limits_{i=0}^{27}[z^i]G^3(z)\cdot [z^{-i}]G^3(z^{-1})=\sum\limits_{i=0}^{27}(D_3^i)^2</tex>. Воспользуемся теоремой Коши <ref>[https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%9A%D0%BE%D1%88%D0%B8 Интегральная формула Коши — Википедия] |
</ref> из комплексного анализа: | </ref> из комплексного анализа: | ||
{{Теорема | {{Теорема | ||
Строка 46: | Строка 46: | ||
== Способ с конечной суммой == | == Способ с конечной суммой == | ||
− | Рассмотрим функцию <tex>g(\phi)=H(e^{i\phi})=\left(\dfrac{\sin{5\phi}}{\sin{\frac{\pi}{2}}}\right)^6</tex>. Как доказано выше, <tex>L_6=\dfrac{1}{2\pi}\displaystyle\int\limits_0^{2\pi}g(\phi)d\phi</tex>. Для интеграла можно выписать приближенную формулу и получить <tex>L_6 \approx \dfrac{1}{N}\sum\limits_{k=0}^{N-1}g(\dfrac{2\pi k}{N})</tex>. Интересно, что при достаточно большом <tex>N</tex> это равенство становится точным. | + | Рассмотрим функцию <tex>g(\phi)=H(e^{i\phi})=\left(\dfrac{\sin{5\phi}}{\sin{\frac{\pi}{2}}}\right)^6</tex>. Как доказано выше, <tex>L_6=\dfrac{1}{2\pi}\displaystyle\int\limits_0^{2\pi}g(\phi)d\phi</tex>. Для интеграла можно выписать приближенную формулу и получить <tex>L_6 \approx \displaystyle\dfrac{1}{N}\sum\limits_{k=0}^{N-1}g\Big(\dfrac{2\pi k}{N}\Big)</tex>. Интересно, что при достаточно большом <tex>N</tex> это равенство становится точным. |
{{Утверждение | {{Утверждение | ||
|statement=При <tex>N \geqslant 28</tex> и любом <tex>\phi_0</tex> <tex>L_6 = \dfrac{1}{N}\sum\limits_{k=0}^{N-1}g(\phi_k)</tex>, где <tex>\phi_k=\phi_0+\dfrac{2\pi k}{N}, k > 0</tex>. | |statement=При <tex>N \geqslant 28</tex> и любом <tex>\phi_0</tex> <tex>L_6 = \dfrac{1}{N}\sum\limits_{k=0}^{N-1}g(\phi_k)</tex>, где <tex>\phi_k=\phi_0+\dfrac{2\pi k}{N}, k > 0</tex>. |
Текущая версия на 19:15, 4 сентября 2022
Троллейбусный (трамвайный) билет имеет номер, состоящий из шести цифр. Билет считается счастливым, если сумма первых трёх цифр равна сумме последних трёх, например,
. Известно, что количество счастливых билетов из шести цифр равно .Задача: |
Для натурального | найти количество -значных счастливых билетов .
Содержание
Общие идеи
Обозначим количество
-значных чисел с суммой как (число может содержать ведущие нули). -значный счастливый билет состоит из двух частей: левой ( цифр) и правой (тоже цифр), причём в обеих частях сумма цифр одинакова. Зафиксируем — -значное число с суммой в левой части (всего таких чисел , значит это можно сделать способами). Для него будет существовать возможных вариантов числа в правой части, следовательно количество счастливых билетов с суммой в одной из частей равно . Значит общее число билетов равно . Верхний индекс суммирования равен , так как максимальная сумма цифр в одной части билета равна . Также можно сопоставить счастливому билету -значное число с суммой : , причем это соответствие взаимно-однозначно, значит множества счастливых билетов и -значных чисел с суммой равномощны, поэтому .Метод динамического программирования
Научимся вычислять
. Положим . При количество -значных чисел с суммой цифр можно выразить через количество -значных чисел, добавляя к ним -ю цифру, которая может быть равна : . Ответ — в , алгоритм будет работать за .Метод производящей функции
Выпишем производящую функцию
, коэффициент при у которой будет равен : Действительно, однозначное число с суммой цифр (для ) можно представить одним способом. Для — ноль способов. Заметим, что — производящая функция для чисел , поскольку коэффициент при получается перебором всех возможных комбинаций из цифр, равных в сумме . Ответом на задачу будет . Перепишем производящую функцию в ином виде: и получим, что . Так как , понятно, что , что при дает .Решение с помощью формулы включения-исключения
Как мы заметили раньше, ответ на задачу равен количеству шестизначных билетов с суммой [1] из по , в котором -й элемент повторяется раз. Так как это сопоставление взаимно-однозначно, количество расстановок равно количеству сочетаний с повторениями, т.е. . Число всех расстановок неотрицательных целых чисел с суммой в шесть позиций равно . Число расстановок одинаково для всех и равно . В самом деле, мы можем поставить в -ю позицию число , а оставшуюся сумму произвольно распределить по шести позициям. Аналогично, число расстановок одинаково для любой пары и равно : мы выбираем две позиции и ставим в них и произвольно распределяем оставшуюся сумму по шести позициям. Таким образом, искомое количество расстановок равно .
. Рассмотрим расстановки целых неотрицательных чисел на шести позициях, дающих в сумме ; обозначим их множество . Выделим шесть его подмножеств , где -е множество состоит из расстановок, у которых в -й позиции стоит число, не меньшее . Число счастливых билетов равно числу расстановок, не принадлежащих ни одному из множеств. Расстановке из чисел с суммой сопоставим сочетание с повторениямиРешение путем интегрирования
Рассмотрим многочлен Лорана (т.е. многочлен, в котором допускаются отрицательные степени) [2] из комплексного анализа:
. Заметим, что его свободный член равен . Воспользуемся теоремой КошиТеорема (Коши): |
Для любого многочлена Лорана его свободный член равен
|
Упростим многочлен
:- и применим замену :
Рассмотрим функцию [3] Этот метод позволяет оценить значение интеграла
на . Вне отрезка , значит интеграл по этой части не больше , основная часть сосредоточена на . Оценим интеграл по этому промежутку с помощью метода стационарной фазы.- . При значение интеграла определяется поведением его фазы, т.е. , в окрестности стационарной точки (точки, где , или, что то же самое, ). Вблизи , а . При больших получим
- [4]. Заметим, что при , поэтому интеграл примерно равен . , где — функция ошибок
Полагая
и вспоминая выражение для , получаем приближенное равенство:Этот результат с хорошей точностью (отклонение составляет не более
) приближает искомое значение.Способ с конечной суммой
Рассмотрим функцию
. Как доказано выше, . Для интеграла можно выписать приближенную формулу и получить . Интересно, что при достаточно большом это равенство становится точным.Утверждение: |
При и любом , где . |
По определению, , где — коэффициенты многочлена . Обозначим . Докажем, что . Раскроем :
Рассмотрим внутреннюю сумму:
Таким образом, а свободный член , равен , как известно из предыдущего раздела. |
См. также
Примечания
Источники информации
- Ландо С. К., Лекции о производящих функциях. — 3-е изд., испр. — М.: МЦНМО, 2007. — 144с. ISBN 978-5-94057-042-4