Метод Лупанова синтеза схем — различия между версиями
| Gaporf (обсуждение | вклад)  (→Мультиплексор и дешифратор) | м (rollbackEdits.php mass rollback) | ||
| (не показаны 4 промежуточные версии 2 участников) | |||
| Строка 38: | Строка 38: | ||
| где <tex>j_i</tex> {{---}} номер сорта столбца полосы <tex>i</tex>, являющегося соответствующей частью столбца <tex>(\sigma_{k + 1}, \sigma_{k + 2}, \ldots, \sigma_{n})</tex>. | где <tex>j_i</tex> {{---}} номер сорта столбца полосы <tex>i</tex>, являющегося соответствующей частью столбца <tex>(\sigma_{k + 1}, \sigma_{k + 2}, \ldots, \sigma_{n})</tex>. | ||
| − | == Мультиплексор и  | + | == Мультиплексор и демультиплексор == | 
| {{main|Мультиплексор и демультиплексор}} | {{main|Мультиплексор и демультиплексор}} | ||
| − | Для упрощения доказательства теоремы будем использовать элементы '''''мультиплексор''''' и ''''' | + | Для упрощения доказательства теоремы будем использовать элементы '''''мультиплексор''''' и '''''демультиплексор'''''. | 
| {{ | {{ | ||
| Определение|definition= | Определение|definition= | ||
| Строка 50: | Строка 50: | ||
| }}{{ | }}{{ | ||
| Определение|definition= | Определение|definition= | ||
| − | ''' | + | '''Демультиплексор''' (''англ.'' demultiplexer) {{---}} логический элемент, получающий на вход | 
| * булево значение <tex>z</tex>; | * булево значение <tex>z</tex>; | ||
| * <tex>n</tex>-значное число <tex>x</tex> в двоичном представлении | * <tex>n</tex>-значное число <tex>x</tex> в двоичном представлении | ||
| Строка 56: | Строка 56: | ||
| }} | }} | ||
| {| | {| | ||
| − | |[[Файл:Mux_demux.png|500px|thumb|Мультиплексор слева,  | + | |[[Файл:Mux_demux.png|500px|thumb|Мультиплексор слева, демультиплексор справа]] | 
| |} | |} | ||
| Строка 67: | Строка 67: | ||
| Для удобства поделим схему на блоки: | Для удобства поделим схему на блоки: | ||
| − | * '''Блок A''' {{---}}  | + | * '''Блок A''' {{---}} демультиплексор, которому на вход подали <tex>1</tex> и <tex>(x_1, x_2, \ldots, x_k)</tex> в качестве двоичного представления числа. | 
| − | * '''Блок B''' {{---}} схемная реализация всех <tex>g_{ij}</tex>. Функцию <tex>g_{ij}</tex> можно реализовать как <tex dpi="145">\bigvee\limits_{\beta_l = 1} y_{il}</tex>, где <tex>y_{il}</tex> {{---}} выдал ли  | + | * '''Блок B''' {{---}} схемная реализация всех <tex>g_{ij}</tex>. Функцию <tex>g_{ij}</tex> можно реализовать как <tex dpi="145">\bigvee\limits_{\beta_l = 1} y_{il}</tex>, где <tex>y_{il}</tex> {{---}} выдал ли демультиплексор <tex>1</tex> на <tex>l</tex>-м выходе <tex>i</tex>-й полосы. | 
| * '''Блок C''' {{---}} схемная реализация всех <tex>f(x_1, x_2, \ldots, x_k, \sigma_{k + 1}, \sigma_{k + 2}, \ldots, \sigma_n)</tex>. ''(здесь <tex>\sigma_i</tex> - фиксированные параметры, см. п. <tex>3.1</tex>)'' | * '''Блок C''' {{---}} схемная реализация всех <tex>f(x_1, x_2, \ldots, x_k, \sigma_{k + 1}, \sigma_{k + 2}, \ldots, \sigma_n)</tex>. ''(здесь <tex>\sigma_i</tex> - фиксированные параметры, см. п. <tex>3.1</tex>)'' | ||
| * '''Блок D''' {{---}} мультиплексор, получающий на вход все <tex>f(x_1, x_2, \ldots, x_k, \sigma_{k + 1}, \sigma_{k + 2}, \ldots, \sigma_n)</tex> и параметры функции <tex>x_{k + 1}, x_{k + 2}, \ldots, x_n</tex> в качестве двоичного представления числа. '''''Результат работы схемы''''' {{---}} вывод мультиплексора. | * '''Блок D''' {{---}} мультиплексор, получающий на вход все <tex>f(x_1, x_2, \ldots, x_k, \sigma_{k + 1}, \sigma_{k + 2}, \ldots, \sigma_n)</tex> и параметры функции <tex>x_{k + 1}, x_{k + 2}, \ldots, x_n</tex> в качестве двоичного представления числа. '''''Результат работы схемы''''' {{---}} вывод мультиплексора. | ||
Текущая версия на 19:13, 4 сентября 2022
| Теорема: | 
| Любая  булева функция от  аргументов  в базисе  имеет  схемную сложность . | 
Представление функции
Поделим аргументы функции на два блока: первые и оставшиеся .
Для удобства дальнейших рассуждений представим булеву функцию в виде таблицы, изображённой на рис. . Строки индексируются значениями первых переменных, столбцы — значениями оставшихся ; таким образом, на пересечении столбца и строки находится значение функции для соответствующего набора аргументов.
Разделение на полосы
Разделим таблицу на горизонтальные полосы шириной (последняя полоса, возможно, будет короче остальных; её ширину обозначим ). Пронумеруем полосы сверху вниз от до .
Рассмотрим независимо некоторую полосу. Заметим, что среди её столбцов при небольшом будет много повторений; далее про одинаковые столбцы, находящиеся в одной полосе, будем говорить, что они одного сорта.
| Определение: | 
| Сорт некоторого столбца данной полосы — его класс эквивалентности по отношению поэлементного равенства столбцов данной полосы. | 
Число сортов столбцов -й полосы обозначим как . Понятно, что для любой полосы (для последней ).
Функция для одной полосы
Пусть для некоторого
- — произвольный столбец -й полосы -го сорта (точное положение столбца далее не будет иметь значения, по определению сорта)
- — аргументы функции, соответствующие -й строке -й полосы.
Тогда введём булеву функцию
Другими словами, если строка, соответствующая аргументам функции , находится в -й полосе, то функция возвращает значение, записанное в столбце сорта для этой строки. Если же эта строка находится в другой полосе, то функция вернёт . Иллюстрация принципа работы функции приведена на рис. .
Вывод исходной функции для фиксированной части параметров
Поскольку изначальный столбец складывается из столбцов соответствующих сортов в полосах, , где — номер сорта столбца полосы , являющегося соответствующей частью столбца .
Мультиплексор и демультиплексор
Для упрощения доказательства теоремы будем использовать элементы мультиплексор и демультиплексор.
| Определение: | 
| Мультиплексор (англ. multiplexer) — логический элемент, получающий на вход 
 | 
| Определение: | 
| Демультиплексор (англ. demultiplexer) — логический элемент, получающий на вход 
 | 
Оба элемента представимы схемами с числом элементов с помощью базиса .
Доказательство
В качестве доказательства ниже будет предложен вариант такой схемы для произвольной функции (представление Лупанова, англ. Lupanov -representation).
Для удобства поделим схему на блоки:
- Блок A — демультиплексор, которому на вход подали и в качестве двоичного представления числа.
- Блок B — схемная реализация всех . Функцию можно реализовать как , где — выдал ли демультиплексор на -м выходе -й полосы.
- Блок C — схемная реализация всех . (здесь - фиксированные параметры, см. п. )
- Блок D — мультиплексор, получающий на вход все и параметры функции в качестве двоичного представления числа. Результат работы схемы — вывод мультиплексора.
Положим ; . Тогда число элементов в блоках
Итого, имеем схему c числом элементов , откуда следует, что , что и требовалось доказать.
См. также
- Реализация булевой функции схемой из функциональных элементов
- Простейшие методы синтеза схем из функциональных элементов
- Контактная схема
Источник информации
- Яблонский С.В. Введение в дискретную математику — М.:"Наука", 1986 — стр. 361
- Wikipedia — Multiplexer




