Динамическое программирование — различия между версиями
Sementry (обсуждение | вклад) м |
|||
Строка 1: | Строка 1: | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | '''Динамическое программирование''' (англ. dynamic programming) — это когда у нас есть задача, которую непонятно как решать, и мы разбиваем ее на меньшие задачи, которые тоже непонятно как решать. <br /> | ||
+ | A.Кормак | ||
+ | }} | ||
<wikitex> | <wikitex> | ||
==Процесс разработки алгоритмов динамического программирования== | ==Процесс разработки алгоритмов динамического программирования== | ||
Строка 8: | Строка 13: | ||
==Оптимальная подструктура== | ==Оптимальная подструктура== | ||
− | Задача имеет оптимальную подструктуру, если её оптимальное решение может быть рационально составлено из оптимальных решений её подзадач. | + | Задача имеет оптимальную подструктуру, если её оптимальное решение может быть рационально составлено из оптимальных решений её подзадач. [[Файл:FG.png|150px|thumb|Граф подзадач для чисел Фибоначчи]] |
− | Наличие оптимальной подструктуры в задаче используется для определения применимости динамического программирования и жадных алгоритмов для решения оной. Например, задача по нахождению кратчайшего пути между некоторыми вершинами графа содержит в себе оптимальное решение подзадач. | + | Наличие оптимальной подструктуры в задаче используется для определения применимости динамического программирования и жадных алгоритмов для решения оной. Например, |
− | + | задача по нахождению кратчайшего пути между некоторыми вершинами графа содержит в себе оптимальное решение подзадач. | |
+ | |||
Многие задачи, решаемые динамическим программированием, можно определить как поиск в заданном ориентированном ациклическом графе [[Кратчайший_путь_в_ациклическом_графе|кратчайшего пути]] от одной вершины к другой. | Многие задачи, решаемые динамическим программированием, можно определить как поиск в заданном ориентированном ациклическом графе [[Кратчайший_путь_в_ациклическом_графе|кратчайшего пути]] от одной вершины к другой. | ||
− | [[Файл:ULP.JPG|thumb| | + | [[Файл:ULP.JPG|thumb|right|150px|Задача о самом длинном невзвешенном пути]] |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
===Отсутствие оптимальной подструктуры=== | ===Отсутствие оптимальной подструктуры=== | ||
Строка 20: | Строка 33: | ||
Рассмотрим путь $q \rightarrow r \rightarrow t$, который является самым длинным простым путем $q \rightsquigarrow t$. Является ли путь $q \rightarrow r$ самым длинным путем $q \rightsquigarrow r$? Нет, поскольку простой путь $q \rightarrow s \rightarrow t \rightarrow r$ длиннее. Является ли путь $r \rightarrow t$ самым длинным путем $r \rightsquigarrow t$? Снова нет, поскольку простой путь $r \rightarrow q \rightarrow s \rightarrow t$ длиннее. | Рассмотрим путь $q \rightarrow r \rightarrow t$, который является самым длинным простым путем $q \rightsquigarrow t$. Является ли путь $q \rightarrow r$ самым длинным путем $q \rightsquigarrow r$? Нет, поскольку простой путь $q \rightarrow s \rightarrow t \rightarrow r$ длиннее. Является ли путь $r \rightarrow t$ самым длинным путем $r \rightsquigarrow t$? Снова нет, поскольку простой путь $r \rightarrow q \rightarrow s \rightarrow t$ длиннее. | ||
Таким образом, в задаче о поиске самого длинного невзвешенного пути не возникает никаких оптимальных подструктур. Для этой задачи до сих пор не найдено ни одного эффективного алгоритма, работающего по принципу динамического программирования. Фактически, это NP-полная задача, т.е. вряд ли ее можно решить в течение полиномиального времени. | Таким образом, в задаче о поиске самого длинного невзвешенного пути не возникает никаких оптимальных подструктур. Для этой задачи до сих пор не найдено ни одного эффективного алгоритма, работающего по принципу динамического программирования. Фактически, это NP-полная задача, т.е. вряд ли ее можно решить в течение полиномиального времени. | ||
+ | |||
+ | |||
Строка 26: | Строка 41: | ||
==Принцип оптимальности на префиксе== | ==Принцип оптимальности на префиксе== | ||
− | [[Файл:ST.jpg|200px|thumb| | + | [[Файл:ST.jpg|200px|thumb|right]] |
Рассмотрим некий необратимый процесс производства и представим его в виде ориентированного и ациклического графа. Процесс проходит некий ряд состояний. Началом производства (первым состоянием) обозначим вершину графа $S$, а конец производства (последнее состояние) $T$. Процесс требует оптимизации, т.е. требуется найти оптимальный путь $S \rightsquigarrow T$. Он проходит через вершину графа $U$. Префикс оптимального пути $S \rightsquigarrow U$ является оптимальным путём $S \rightsquigarrow U$. Теперь рассмотрим принцип оптимальности для динамического программирования на префиксе. Итак, имеем некоторый оптимальный путь $S \rightsquigarrow T$, который проходит через $U$. Пусть префикс $ \Delta U$, т.е. путь от $S \rightsquigarrow U$, неоптимален. Тогда заменим неоптимальную часть $S \rightsquigarrow U$ пути $S \rightsquigarrow T$ оптимальной, а путь $U \rightsquigarrow T$ добавим в конец. Получим оптимальный путь $S \rightsquigarrow T$. Принцип оптимальности для подзадач выполняется. Т.е. чтобы получить оптимальный путь из одной вершины графа в другую, префиксы меньших путей должны быть оптимальными. | Рассмотрим некий необратимый процесс производства и представим его в виде ориентированного и ациклического графа. Процесс проходит некий ряд состояний. Началом производства (первым состоянием) обозначим вершину графа $S$, а конец производства (последнее состояние) $T$. Процесс требует оптимизации, т.е. требуется найти оптимальный путь $S \rightsquigarrow T$. Он проходит через вершину графа $U$. Префикс оптимального пути $S \rightsquigarrow U$ является оптимальным путём $S \rightsquigarrow U$. Теперь рассмотрим принцип оптимальности для динамического программирования на префиксе. Итак, имеем некоторый оптимальный путь $S \rightsquigarrow T$, который проходит через $U$. Пусть префикс $ \Delta U$, т.е. путь от $S \rightsquigarrow U$, неоптимален. Тогда заменим неоптимальную часть $S \rightsquigarrow U$ пути $S \rightsquigarrow T$ оптимальной, а путь $U \rightsquigarrow T$ добавим в конец. Получим оптимальный путь $S \rightsquigarrow T$. Принцип оптимальности для подзадач выполняется. Т.е. чтобы получить оптимальный путь из одной вершины графа в другую, префиксы меньших путей должны быть оптимальными. | ||
− | |||
=== Примеры задач === | === Примеры задач === | ||
Строка 34: | Строка 48: | ||
== Принцип оптимальности на подотрезках== | == Принцип оптимальности на подотрезках== | ||
− | Требуется посчитать функцию $f(1, n)$. Принцип состоит в следующем: пусть | + | Требуется посчитать функцию $f(1, n)$. Принцип состоит в следующем: пусть для всех отрезков $i$, $j$ (где <tex> u \le i \le j \le v </tex>) известен оптимальный ответ для функции $f(i, j)$. Тогда мы будем вычислять $f(u, v)$ через такие $f(i, j)$. В качестве примера рассмотрим следующую классическую задачу: дана строка длины n, нужно найти максимальный подпалиндром (подпоследовательность максимальной длины, которая является палиндромом). Пусть $d(i, j)$ - ответ на задачу для подстроки, начинающаяся с символа $i$ и заканчивающаяся в символе $j$. Ясно, что $d(i, j) = 0$ для всех $i, j,$ таких что $i > j$ и $d(i, i) = 1$ для всех $i$. Пусть нам нужно посчитать значение для $d(i, j)$, причем значение $d$ для всех $l, r$, таких что <tex> i \le l \le r \le j </tex> уже посчитаны и они оптимальны. Рассмотрим два случая: <br /> |
# <tex> s(i) \neq s(j), тогда d(i, j) = max(d(i, j - 1), d(i + 1, j)) </tex> <br /> | # <tex> s(i) \neq s(j), тогда d(i, j) = max(d(i, j - 1), d(i + 1, j)) </tex> <br /> | ||
# <tex> s(i) = s(j), тогда d(i, j) = d(i + 1, j - 1) + 2 </tex> <br /> | # <tex> s(i) = s(j), тогда d(i, j) = d(i + 1, j - 1) + 2 </tex> <br /> | ||
Строка 48: | Строка 62: | ||
== Принцип оптимальности на подмножествах == | == Принцип оптимальности на подмножествах == | ||
− | + | * [[Задача коммивояжера, ДП по подмножествам]] | |
− | == | + | ==Источники информации== |
*Т. Кормен. «Алгоритмы. Построение и анализ» второе издание, Глава 15 | *Т. Кормен. «Алгоритмы. Построение и анализ» второе издание, Глава 15 | ||
*T. H. Cormen. «Introduction to Algorithms» third edition, Chapter 15 | *T. H. Cormen. «Introduction to Algorithms» third edition, Chapter 15 | ||
− | + | ||
− | + | ==Ссылки== | |
− | + | * [http://en.wikipedia.org/wiki/Optimal_substructure Wikipedia {{---}} Optimal substructure ] | |
− | ** [http://ru.wikipedia.org/wiki/%C4%E8%ED%E0%EC%E8%F7%E5%F1%EA%EE%E5_%EF%F0%EE%E3%F0%E0%EC%EC%E8%F0%EE%E2%E0%ED%E8%E5 Динамическое программирование] | + | * [http://en.wikipedia.org/wiki/Greedy_algorithm Wikipedia {{---}} Greedy algorithm] |
+ | * [https://en.wikipedia.org/wiki/Dynamic_programming Wikipedia {{---}} Dynamic programming] | ||
+ | * [https://ru.wikipedia.org/wiki/%D0%96%D0%B0%D0%B4%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC Википедия {{---}} Жадный алгоритм] | ||
+ | * [http://ru.wikipedia.org/wiki/%C4%E8%ED%E0%EC%E8%F7%E5%F1%EA%EE%E5_%EF%F0%EE%E3%F0%E0%EC%EC%E8%F0%EE%E2%E0%ED%E8%E5 Википедия {{---}} Динамическое программирование] | ||
[[Категория:Дискретная математика и алгоритмы]] | [[Категория:Дискретная математика и алгоритмы]] | ||
[[Категория:Динамическое программирование]] | [[Категория:Динамическое программирование]] | ||
</wikitex> | </wikitex> | ||
+ | |||
+ | ---- |
Версия 22:02, 2 января 2017
Определение: |
Динамическое программирование (англ. dynamic programming) — это когда у нас есть задача, которую непонятно как решать, и мы разбиваем ее на меньшие задачи, которые тоже непонятно как решать. A.Кормак |
<wikitex>
Содержание
Процесс разработки алгоритмов динамического программирования
В процессе составления алгоритмов динамического программирования, требуется следовать последовательности из четырёх действий:
- Описать структуру оптимального решения.
- Рекурсивно определить значение оптимального решения.
- Вычислить значение оптимального решения с помощью метода восходящего анализа.
- Составить оптимальное решение на основе полученной информации.
Оптимальная подструктура
Задача имеет оптимальную подструктуру, если её оптимальное решение может быть рационально составлено из оптимальных решений её подзадач.Наличие оптимальной подструктуры в задаче используется для определения применимости динамического программирования и жадных алгоритмов для решения оной. Например, задача по нахождению кратчайшего пути между некоторыми вершинами графа содержит в себе оптимальное решение подзадач.
Многие задачи, решаемые динамическим программированием, можно определить как поиск в заданном ориентированном ациклическом графе кратчайшего пути от одной вершины к другой.
Отсутствие оптимальной подструктуры
Иногда оптимальная подструктура может отсутствовать в задаче. Рассмотрим задачу, в которой имеется ориентированный граф $G = (V, E)$ и вершины $u, v \in V$, задачу по определению простого пути от вершины $u$ к вершине $v$, состоящий из максимального количества рёбер.
Рассмотрим путь $q \rightarrow r \rightarrow t$, который является самым длинным простым путем $q \rightsquigarrow t$. Является ли путь $q \rightarrow r$ самым длинным путем $q \rightsquigarrow r$? Нет, поскольку простой путь $q \rightarrow s \rightarrow t \rightarrow r$ длиннее. Является ли путь $r \rightarrow t$ самым длинным путем $r \rightsquigarrow t$? Снова нет, поскольку простой путь $r \rightarrow q \rightarrow s \rightarrow t$ длиннее. Таким образом, в задаче о поиске самого длинного невзвешенного пути не возникает никаких оптимальных подструктур. Для этой задачи до сих пор не найдено ни одного эффективного алгоритма, работающего по принципу динамического программирования. Фактически, это NP-полная задача, т.е. вряд ли ее можно решить в течение полиномиального времени.
Оптимальность для подзадач
Важнейшее свойство задач, которое позволяет решать их с помощью динамического программирования, это оптимальность для подзадач. В зависимости от формулировки задачи, будь то динамическое программирование на отрезке, на префиксе, на дереве, термин оптимальности для подзадач может быть различным, но, в целом, формулируется так: если есть оптимальное решение для некоторой подзадачи, которая возникает в процессе решения задачи, то именно его нужно использовать для решения задачи в целом
Принцип оптимальности на префиксе
Рассмотрим некий необратимый процесс производства и представим его в виде ориентированного и ациклического графа. Процесс проходит некий ряд состояний. Началом производства (первым состоянием) обозначим вершину графа $S$, а конец производства (последнее состояние) $T$. Процесс требует оптимизации, т.е. требуется найти оптимальный путь $S \rightsquigarrow T$. Он проходит через вершину графа $U$. Префикс оптимального пути $S \rightsquigarrow U$ является оптимальным путём $S \rightsquigarrow U$. Теперь рассмотрим принцип оптимальности для динамического программирования на префиксе. Итак, имеем некоторый оптимальный путь $S \rightsquigarrow T$, который проходит через $U$. Пусть префикс $ \Delta U$, т.е. путь от $S \rightsquigarrow U$, неоптимален. Тогда заменим неоптимальную часть $S \rightsquigarrow U$ пути $S \rightsquigarrow T$ оптимальной, а путь $U \rightsquigarrow T$ добавим в конец. Получим оптимальный путь $S \rightsquigarrow T$. Принцип оптимальности для подзадач выполняется. Т.е. чтобы получить оптимальный путь из одной вершины графа в другую, префиксы меньших путей должны быть оптимальными.
Примеры задач
Принцип оптимальности на подотрезках
Требуется посчитать функцию $f(1, n)$. Принцип состоит в следующем: пусть для всех отрезков $i$, $j$ (где
Доказательство:
- Так
- Данное равенство следует из факта, что выгодно включить в максимальный подпалиндром символы $s(i)$ и $s(j)$.
Примеры задач
Принцип оптимальности на подмножествах
Источники информации
- Т. Кормен. «Алгоритмы. Построение и анализ» второе издание, Глава 15
- T. H. Cormen. «Introduction to Algorithms» third edition, Chapter 15
Ссылки
- Wikipedia — Optimal substructure
- Wikipedia — Greedy algorithm
- Wikipedia — Dynamic programming
- Википедия — Жадный алгоритм
- Википедия — Динамическое программирование
</wikitex>