Задача о порядке перемножения матриц — различия между версиями
Енгулатов (обсуждение | вклад) (Переменные и константы взяты в Tex. Псевдокод отформатирован. Убрал про мемоизацию. Исправлены источники информации. Добавлено про ПСК) |
м (→Псевдокод) |
||
Строка 44: | Строка 44: | ||
=== Псевдокод === | === Псевдокод === | ||
− | + | ||
'''int''' dp[][] <font color="green">// dp[i][j] — ответ на отрезке [i, j)</font> | '''int''' dp[][] <font color="green">// dp[i][j] — ответ на отрезке [i, j)</font> | ||
'''int''' v[] <font color="green">// Массив v[] — хранит все размеры матриц по порядку | '''int''' v[] <font color="green">// Массив v[] — хранит все размеры матриц по порядку | ||
Строка 58: | Строка 58: | ||
dp[l][r] = min(dp[l][r], v[l] * v[i] * v[r] + matrixChainMultiplication(l, i) + matrixChainMultiplication(i, r)) | dp[l][r] = min(dp[l][r], v[l] * v[i] * v[r] + matrixChainMultiplication(l, i) + matrixChainMultiplication(i, r)) | ||
'''return''' dp[l][r] | '''return''' dp[l][r] | ||
− | |||
== См. также == | == См. также == |
Версия 13:27, 7 февраля 2018
Задача: |
Дана последовательность из | матриц, требуется найти самый эффективный способ их перемножения.
У нас есть множество способов перемножить матрицы, потому что операция перемножения ассоциативна. Другими словами, нет разницы в каком порядке расставляются скобки между множителями, результат будет один и тот же.
Расстановок скобок достаточно много и их количество очень быстро растет. Точное количество всевозможных вариантов равно –ому числу Каталана. Однако, порядок в котором расставляются скобки между матрицами повлияет на количество арифметических операций, которые потребуются на вычисление ответа, или, другими словами, на эффективность.
Например, предположим, что
, , . Тогда:- Для будет операций
- Для будет операций.
Как мы видим, первый способ гораздо эффективней.
Содержание
Решение задачи
Перебор всех вариантов
В данной задаче нужно узнать минимальное количество операций (или минимальную стоимость), необходимых для перемножения матриц. Если перемножить только две матрицы, то можно осуществить это едиственным способом, следовательно минимальная стоимость — это стоимость перемножения этих двух матриц. В общем, можно найти минимальную стоимость используя следующий рекурсивный алгоритм:
- взять последовательность матриц и разделить её на две части,
- найти минимальную стоимость перемножения на каждой подпоследовательности,
- сложить эти две стоимости и прибавить к этому стоимость перемножения двух получившихся матриц,
- сделать это для каждой возможной позиции в последовательности, в которой она может быть разделена и взять минимум среди всех результатов.
Или другими словами, давайте обозначим через
минимальное количество скалярных умножений для вычисления матрицы , то получаем следующее рекуррентное соотношение:Объясняется оно просто: для того, чтобы найти произведение матриц
при не нужно ничего делать — это и есть сама матрица . При нетривиальном случае мы перебираем все точки разбиения матрицы на матрицы и , ищем количество операций, необходимое чтобы их получить и затем перемножаем для получения матрицы .(Оно будет равно кол-ву операций, потраченное на решение подзадач + стоимость умножения матриц ). Считаем, что размеры матриц заданы в массиве и размер матрицы равен .
Чтобы привести пример, давайте вернемся к нашим матрицам. Если у нас есть четыре матрицы , то мы посчитаем для , , и , делая рекурсивные вызовы на отрезках , , , и , чтобы найти минимальную стоимость. Потом среди них выбираем лучший вариант. Так же, этот алгоритм дает не только минимальную стоимость, но и показывает наилучший способ перемножения матриц: нужно только сгрупировать тем же образом матрицы, каким дается нам минимальная стоимость.
Однако, если применить этот алгоритм, то обнаружим, что он работает также медленно, как и наивный способ перебирания всех скобочных последовательностей. Делается значительное количество ненужной работы. Например, в выше описанном алгоритме, осуществляется рекурсивный вызов, чтобы найти наилучшую стоимость для подсчета и . Но нахождение наилучшей стоимости для подсчета так же требует нахождения лучшей стоимости для . Так как рекурсия растет вглубь все больше и больше, то и число ненужных повторений увеличивается. Итоговая асимптотика, как было сказано выше, равняется –ому числу Каталана, да плюс вычисление для каждой правильной скобочной последовательности затрат на перемножение (то есть ). Так как -ое число Каталана равняется или асимптотически , а это быстро возрастающая функциия, нам бы хотелось решение, которое работает быстрее.
Псевдокод
int dp[][] // dp[i][j] — ответ на отрезке [i, j)
int v[] // Массив v[] — хранит все размеры матриц по порядку
// Так как у нас размеры соседних матриц по вертикали и горизонтали совпадают, то они занесены в этот массив однократно
// l — включая в отрезок, r — исключая из отрезка. Изначально l = 0, r = n, где n — длина последовательности
int matrixChainMultiplication(int l, int r)
if dp[l][r] == -1 // Если значение динамики не посчитано
if l == r - 1
dp[l][r] = 0 // Если у нас подотрезок длины 1, то количество операций для перемножения равно нулю
else
dp[l][r] =
for i = l + 1 to r - 1
dp[l][r] = min(dp[l][r], v[l] * v[i] * v[r] + matrixChainMultiplication(l, i) + matrixChainMultiplication(i, r))
return dp[l][r]
См. также
- Задача о наибольшей общей подпоследовательности
- Кратчайший путь в ациклическом графе
- Задача о расстановке знаков в выражении
- Aлгоритм Кока-Янгера-Касами
- Правильные скобочные последовательности