Регулярные выражения с обратными ссылками
Базовые определения
| Определение: |
| Группа (англ. capture group) — часть регулярного выражения. Общепринятое условное обозначение группы — круглые скобки. |
Пример: В данном регулярном выражении представлена одна группа —
Каждой группе соответствует порядковый номер. Нумерация идёт слева направо: номеру группы соответствует порядковый номер открывающей круглой скобки этой группы в тексте регулярного выражения (исключая случаи, когда скобки являются частью синтаксической конструкции).
Пример: Группа — группа — группа —
| Определение: |
| Обратная ссылка (англ. backreference) — механизм повторного использования групп или слов группы. |
Для повторного использования слова группы используется обозначение где — номер группы.
Пример использования: Данное регулярное выражение будет задавать язык тандемных повторов. Несмотря на то, что он не является регулярным, его можно представить с помощью механизма обратных ссылок.
Для повторного использования регулярного выражения группы используется обозначение где — номер группы. Использование круглых скобок обусловленно тем, что как управляющий символ, уже используется. В данном случае круглые скобки следует воспринимать как общепринятое условное обозначение обратной ссылки; запись не задаёт группу. Например, в выражении ссылке будет соответствовать а не
Обратите внимание, что символы круглых скобок и обратной косой черты являются управляющими. Чтобы использовать их непосредственно как часть слова, их нужно экранировать.
Пример экранирования (в данном случае в качестве символа экранирования используется символ обратной косой черты): — обратная ссылка на первую группу, — слово, состоящее из символа обратной косой черты и единицы.
| Определение: |
| Регулярные выражения с обратными ссылками (англ. regex with backreferences) — регулярные выражения, использующие механизм обратных ссылок. |
Примеры
- Регулярное выражение породит язык Для сравнения, запишем эквивалентное регулярное выражение без использования механизма обратных ссылок:
- Данное регулярное выражение будет допускать только слова, в которых количество букв чётно.
- Выведем регулярное выражение для языка, состоящего из палиндромов фиксированной длины или над алфавитом :
- для чётного :
- для нечётного :
- Запишем выражение для языка Данный язык не является ни регулярным, ни контекстно-свободным (по лемме о разрастании), то есть является контекстно-зависимым, но также легко представим с помощью обратных ссылок:
- .
- Язык можно представить при помощи обратных ссылок:
- Следущий за ссылкой знак вопроса обозначает использование группы или раз, то есть осуществление рекурсивного вызова или его окончание.
- ссылается на первую группу — , что равносильно рекурсивной зависимости:
- Очевидно, что все слова из языка удовлетворяют данному регулярному выражению.
Теорема о КС-языках
| Теорема: |
С помощью механизма обратных ссылок можно представить любой контекстно-свободный язык. |
| Доказательство: |
|
Любую контекстно-свободную грамматику можно привести к нормальной форме Хомского, следовательно, достаточно доказать, что грамматику, заданную в такой форме, можно преобразовать в регулярное выражение с обратными ссылками. Рассмотрим правила, которые могут содержаться в такой грамматике:
Представим каждое из них в виде регулярного выражения с обратными ссылками. Используя ссылки на регулярные выражения, соответствующие нетерминалам и , можно представить первое правило: где и соответствуют нетерминалам и ; Второе и третье правила не требуют использования обратных ссылок:
Если какому-то нетерминалу соответствуют несколько регулярных выражений , заменить их на одно: (очевидно, что оно также будет соответствовать этому нетерминалу). Регулярное выражение для данной КС-грамматики соответствует нетерминалу однако в нём могут встречаться ссылки на внешние — отличные от — группы. Будем обрабатывать такие ссылки, используя метод левостороннего вывода. При обработке очередной ссылки:
|
Пример преобразования
Рассмотрим следующую КС-грамматику:
- Приведём её к нормальной форме Хомского:
- Каждому нетерминалу поставим в соответствие свой номер:
- Каждое правило представим в виде регулярного выражения с обратными ссылками:
- Объединим регулярные выражения, соответствующие одинаковым нетерминалам:
- Избавимся от внешних ссылок в регулярном выражении для :
| № | Текущее регулярное выражение |
|---|---|
| 1. | |
| 2. | |
| 3. | |
| 4. | |
| 5. | |
| 6. | |
| 7. | |
| 8. | |
| 9. |
| 1 | |||||
| 1 | 3 | ||||
| 1 | 4 | 3 | |||
| 1 | 4 | 3 | 6 | ||
| 1 | 4 | 3 | 6 | ||
| 1 | 4 | 3 | 6 | ||
| 1 | 4 | 8 | 3 | 6 | |
| 1 | 4 | 8 | 3 | 6 | 10 |
| 1 | 4 | 8 | 3 | 6 | 10 |
Напоминание: круглые скобки в записи обратной ссылки являются синтаксической конструкцией и не задают группу.
Таким образом, регулярное выражение для данной грамматики будет выглядеть так:
Рассмотрим другой пример:
- Приведём её к нормальной форме Хомского:
- Каждому нетерминалу поставим в соответствие свой номер:
- Каждое правило представим в виде регулярного выражения с обратными ссылками:
- Объединим регулярные выражения, соответствующие одинаковым нетерминалам:
- Избавимся от внешних ссылок в регулярном выражении для :
| № | Текущее регулярное выражение |
|---|---|
| 1. | |
| 2. | |
| 3. | |
| 4. | |
| 5. | |
| 6. |
| 1 | ||||
| 1 | 4 | |||
| 1 | 4 | 5 | ||
| 1 | 4 | 6 | 5 | |
| 1 | 4 | 6 | 5 | 7 |
| 1 | 4 | 6 | 5 | 7 |
Таким образом, регулярное выражение для данной грамматики будет выглядеть так:
Применение
Регулярные выражения с обратными ссылками имеют бо́льшую мощность по сравнению с обычными. С их помощью реализуются как регулярные языки, так и контекстно-свободные грамматики, а также некоторые контекстно-зависимые (например, язык тандемных повторов).
Регулярные выражения в языках программирования зачастую поддерживают обратные ссылки. На практике их можно использовать, например, для парсинга -выражений (поиск подстрок, содержащихся в определённых тегах).