Машинное обучение — различия между версиями
Evaleria (обсуждение | вклад) м |
Evaleria (обсуждение | вклад) м |
||
Строка 23: | Строка 23: | ||
*[[Байесовская классификация]] | *[[Байесовская классификация]] | ||
*[[Байесовские сети]] | *[[Байесовские сети]] | ||
− | |||
*[[Поиск ближайших соседей с помощью иерархического маленького мира]]<tex>^\star</tex> | *[[Поиск ближайших соседей с помощью иерархического маленького мира]]<tex>^\star</tex> | ||
Строка 43: | Строка 42: | ||
*[[Обратное распространение ошибки]] | *[[Обратное распространение ошибки]] | ||
*[[Практики реализации нейронных сетей]] | *[[Практики реализации нейронных сетей]] | ||
+ | *[[Графовые нейронные сети]]<tex>^\star</tex> | ||
+ | *[[Рекурсивные нейронные сети]]<tex>^\star</tex> | ||
==Глубокое обучение== | ==Глубокое обучение== | ||
Строка 107: | Строка 108: | ||
*[[Примеры кода на R]]<tex>^\star</tex> | *[[Примеры кода на R]]<tex>^\star</tex> | ||
*[[PixelRNN и PixelCNN]] | *[[PixelRNN и PixelCNN]] | ||
− | |||
*[[Дополнение к ранжированию]] | *[[Дополнение к ранжированию]] | ||
*[[Генерация объектов]] | *[[Генерация объектов]] |
Версия 19:36, 4 сентября 2020
Содержание
Общие понятия
- Общие понятия
- Переобучение
- Кросс-валидация
- Стохастический градиентный спуск
- Регуляризация
- Ранжирование
- Обучение с частичным привлечением учителя
- Жизненный цикл модели машинного обучения
- Многопоточность в машинном обучении
Классификация и регрессия
- Метрический классификатор и метод ближайших соседей
- Дерево решений и случайный лес
- Вариации регрессии
- Линейная регрессия
- Логистическая регрессия
- Метод опорных векторов (SVM)
- Ядра
- Оценка качества в задачах классификации и регрессии
- Байесовская классификация
- Байесовские сети
- Поиск ближайших соседей с помощью иерархического маленького мира
Кластеризация
- Кластеризация
- EM-алгоритм
- Иерархическая кластеризация
- Оценка качества в задаче кластеризации
- Эволюционные алгоритмы кластеризации
Ансамбли
Нейронные сети
- Нейронные сети, перцептрон
- Обратное распространение ошибки
- Практики реализации нейронных сетей
- Графовые нейронные сети
- Рекурсивные нейронные сети
Глубокое обучение
- Глубокое обучение
- Настройка глубокой сети
- Batch-normalization
- Рекуррентные нейронные сети
- Сети глубокого доверия
Сверточные сети
Компьютерное зрение
- Компьютерное зрение
- Оценка положения
- Задача нахождения объектов на изображении
- Сегментация изображений
- PixelRNN и PixelCNN
Порождающие модели
Обработка естественного языка
- Распознавание речи
- Обработка естественного языка
- Векторное представление слов
- Классификация текстов и анализ тональности
- Долгая краткосрочная память
- Механизм внимания
Автоматическое машинное обучение
- Автоматическое машинное обучение
- Модель алгоритма и ее выбор
- Мета-обучение
- Поиск архитектуры нейронной сети
Работа с данными
- Уменьшение размерности
- Выброс
- Алгоритмы сэмплирования
- Известные наборы данных
- Метод главных компонент (PCA)
- Стохастическое вложение соседей с t-распределением